File No. S360-36 [——
Form C28-2004-2 TSS

IBM Systems Reference Library

IBM System/360 Time Sharing System
Assembler User Macro Instructions

IBM System/360 Time Sharing System rrovides compre-
hensive program and data management services which,
together with communication, kulk output, and interrup-
tion handling services, are requested through macro
instructions. These wacro instructions are written in
the assembler language as an aid to programming and
processing time-shared tasks.




PREFACE

This publication contains a description
of Time Sharing System/360 (TSS/360) macro
instructions available to the assembler
language user.

The publication is divided into three
parts:

Part I: User Maco Instructions - con-
tains an introduction to user macro
instructions and their functional cate-
gories and describes the basic principals
of the TSS/360 macro instruction language.
Value mnemonics and basic macro instruction
formats are discussed in detail.

Part II: Functional Macro Instruction
Descriptions - contains detailed descrip-
tions of the macro instructions available
with TSS/360 within the framework of their
major functional purpose.

Appendixes -- Use of exit routines, con-
trol characters available with certain data
management facilities, and interrupt handl-
ing routines are explained.

All macro instructions available to the

assembler language user are listed in this
publication. However, since use of certain

Third Edition (September 1968)

macro instructions requires detailed know-
ledge of system operation, these macro
instructions are not of concern to the
average TSS/360 user. Detailed descrip-
tions are given in IBM System/360 Time
Sharing System: System Programmer's Guide,

Form C28-2008.

Prerequisite Publications

IBM System/360 Time Sharing System:
Concepts and Facilities, Form C28-2003

IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000

Other recommended publications are:

IBM System/360 Time Sharing System:
Linkage Editor, Form C28-2005

IBM System/360 Time Sharing System:
Command System User's Guide, Form
C28-2001

IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form
C28-2032

This editor has been updated technically; by including the Command
System macro instructions, AETD, OBEY, PRMPT, MCAST, SYSIN, BPKD, gnd.
GDV; by adding the SIC operand to the GATE macro instruction descriptions;
and by adding a return code to the list of return codes for the CDD macro

instruction.

In addition, it has been reorganized by placing macro in-

struction descriptions within the framework of their major functional

categories.

It should be noted that the DCB, OPEN, and CLOSE macro in-

structions which formerly appeared within each access method grouping

now only appearance.

This edition is current with Version 3, Modification 0, and remains
in effect for all subsequent versions or modifications of IBM System/360

Time Sharing System unless otherwise indicated.

Significant changes or

additions to this publication will be provided in new editions or Techn-

ical Newsletters.

Before using this publication in connection with the

operation of IBM systems, refer to the latest edition of IBM System/360

Time Sharing System:
lications that are applicable and current.

Addendum, Form C28-2043, for the editions of pub-

Specifications contained herein are subject to change from time to

time.
Technical Newsletters.

Any such change will be reported in subsequent revisions or

This publication was prepared for production using an IBM computer to

update the text and to control the page and line format.

Page impres-

sions for photo-offset printing were obtained from an IBM 1403 Printer

using a special print chain.

Requests for copies of IBM publications should be made to your IBM

representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-

ments.

If the form has been removed, comments may be addressed to IBM

Corporation, Time Sharing System/360 Programming Publications, Depart-

ment 561, 2651 Strang Blvd., Yorktown Heights, N. Y. 10598

® International Business Machines Corporation 1966, 1967, 1968



CONTENTS

CELREC -~ LCelete a Record (R) « « o o o o o = o o
RELEX -- Belease Read Exclusive Record (R) . . . .
Virtuval Partitioned Access Method . . . . » s e ° e s a =
FIND -- Find a Member of a Partitioned Data Set (S) . . .
STOW -- Manipulate Partitioned Orgamnization Directory (R)
Basic Sequential Access Method . . ¢ ¢« ¢ o o o o o « « o =
READ -— Read a Block (S) “ ® ® ® ®» » ® % & 8 & & % o = =
WRITE -~ Write a Block (S) . . . . . e o o s o o s o & o
CHECK —-- Wait for and Test Completion of READ or WRITE Operation

PABT I: USER MACRO INSTRUCTIONS . o o 5 o o o o o o o s s a s s 5 o o o o s o o o = 5
Section I: IntroducCtion o « o ¢ « o o o o a o o o o o o s o o o o o a s s a o &« e » 5
Data Set Management . o« « ¢ o« o « o 2 s o o & ¢ = o s s s o 5 o » s = = o o o » o« o« 9
Program ManagemenNt =« o+ o o o o o o o o = o o o o o o s s s a o a o o o a o « = o s b
Section IX: The Macro Instruction Language .« « o« o o « o o o o o o =« o =« = s o o o 1
Macro Instruction FOTMAt .« o o ¢ o o o o 2 » e o s o o o o o s 2 o o o o o o o o« « 1
Name Field « o« o o o o o o o o o o o o 2 a s s 2 s s s 2 8 s o o o o o« o« s « o« o 1
Operation Field . . o v o o o o o o o o o o s o o 2 s o o o o o o o s o s o o« o« « 1
Operand Fi€ld . o o o o o o o o o e o o o o o o s 2 s o o s o s o o o o a » o« o o« 1
Macro Description Value MNDEMORICS « 4 « o o o o 2 o s s o » o s s s « o o o« » o« o« 9
Types Oof MacTo INSLLUCLIONS o ¢ v ¢ o 4 ¢ o o o« o o 5 o s s o s o s« a o« o s a » o« « 17
R-Type MacrIo InsStructions . « o o o ¢ o o o o o o o o o 2 s = o a s a @« « o« o« o « 17
S-Type MacIo INnsStructions . . . o v & ¢ ¢ ¢ o ¢ o o o 2 o o o = o 2 o = o o« o« « » 18
Other Macrc INStructions . .o v o ¢ o ¢ 6 ¢« o ¢ o o« o o 2 o =« s s o s o s o o o « 20
PART II: FUNCTICNAL MACRO INSTRUCTION DESCRIPTIONS &+ o o « 2 o o o « s o o o o « o« « 21
Section I: Data Set ManagemeNt . . o ¢ o o o o o o « s o o o s o o s a o = o o o« = o« 22
Defining a Data Set to the SYSteR « ¢ v ¢ © o o ¢ ¢ o o o « o o o a s s o« o » a o o« & 22
DDEF ~- Define a Data St (S) ¢ v ¢ o o o o o o o » s o 2 s 2 a = o s s s o « « o« 23

BCB —- Construct a Data Control BloCk (0) - ¢« 2« v« o o ¢« « s =« o o o s o s o o o« o 25

CED —— Retrieve and Execute DDEF Commands (S) « =« « « o o = o s« o o o o a o « « « 34
DCBD -- Provide Symbolic Names for a Data Control Block (0) « « « 2 o o« « o« = « - 35
FINDDS* -~ Locate JFCB Corresponding to Data Set Name (S) e« o s o o = o o = s« e o 36
FINDJFCB* - Locate JBCE and Ensure Volume Mounting (S) e« o o o s « = = s o« = = « 36
Connecting a Data Set TO The SYStemM v v v v o o o o « o o o o o o o o o o = e e o o o 37
OPEN -~ Connect a Data Set to the System (5) e s e e s s e o o = o o a = « = o o 38
Accessing a DAata Set o o ¢ 4 6 4t e et e 4 e e e s s s s 4 s e s s o a = s = e o « & 47
Virtual Sequential Access Method . . ¢ & 4o o 4 4 ¢ o o o o s o a o o o o o« » o » «» U2
GET —-- Get a Record (R) .« « o o o o o o o » e« a4 + & o o e 8 s s e e« o o s = o o U2

POT -- Include a record in an Output Data Set (R) ¢ o o o o o o o o o o« o« o« o =« » 43
PUTX -- Replace a Sequential Logical RecorTd (R) « v o « o o o s o o o o 2 « » o« o U4
SETL -~ Specify sStart of Sequential Processing (R) .« « o ¢ ¢ o o o = o o o o o« o U#
Virtual Indexed Sequential Access Method . ¢ o o 4 o 4 o o 2 o o o s s o o« o o« o « U5
GET ~- Get a RecOord (R) o o o = « 2 o = = « = @ e o o s » s s s e = e s s = « o U

FUT -- Include a Record in an Output Data Set (R) “ e ® e o e o s = ° s o o = o o W7
READ -- Read a Selected Logical Record (S) e o o o o o » e s e w e e = e e » + o U
WEBITE ~- Write a Selected Record (S5) c o o o = e o o o e e o e s s o s e = o o U9
SETL —-- Specitfy Start of Seguential Processing (R) e s e s a s a2 o e o & o o s « 91
ESETL -- Belease Shared Data Set (R) o e e e s e o o . . . . 52

Y B ]
* & & & o » 2 g
« o o o &
*® o & 9§ & & 2 3 9
" e ®
¢ o v e s e 8 4 3
¢ o 0 ¢ & 0 o+ e
L T T S R B S N
© o o s o 0 s 0 @
SR .
[54]

.
.
.
.
.
[=)]
~

[ Y U N N )

DQDECB ~- Kemove Unchecked DECBs From a Data Set's DECB Queue (R) . e e« o o o« 69
GETIBUF -- Get a Buffer From a POOl (B) o o ¢ o o « o o o o« o o = . e o = o« « 10
FREEBUF -- Return a Buffer to a Pool (R) &« « o o ¢ = o o » - .« . o o o 71
GETPOOL -- Get a Buffer POOLl (R) o « o o o o 2 o 2 o = o = . . . o s o 72
FREEPOOL -- Free a Buffer Pool (R) « e o o e o s e o & = = - . . P 73

BSP —- Backspace a Block (R) e« e s e e e e

.
0
.
.
L]
.
D R T R S S
—
¢ 8 o & o 5 o o v o I¥e & s b & o 8 2 g
N
P s e s 8 s s s

e * s 0 s s o
i ~
B

CNTIBRL -~ Control On-Line Input/Output Devices (B) . . . . . . .« . o s e 75
FEOV ——- Force End of Velume (R) o« « o 2 o o o o o« = o« = o o . . . e o e 77
POINT —- Position to @ Block (B) =« o o ¢ o o o o = o = o « . . . e o e 78
NOTE -- Provide Position Feedback (R) .« « = e e e = . - . o o o 80
PETOV -- Test for Printer Carriage Overflow (R) e + o e s = s e e« = s = s « o  « 81
Queued Sequential Access Method . . ¢ & & o & 4 & o ¢ o o o o o 2 o o a o = s o« = « B3
GET ~— Get a Logical Record (R) . « e » o e o o s s e e s e o e « o B4
PUT -— Include a Record in an Output Data Set (R) @« o e o ® o » o s s a s« o e« a » 85



PUTX -- Include a Logical Record in an Output or Updated Data

RELSE -— Release an Input Buffer (R) . o s »
TRUNC -- Truncate an Output Buffer (R) « o .
CNTRL -~ Control a Printer or Stacker (R) . .

PETOV —-- Test for Printer Carriage Overflow (R)
SETL -~ Specifies Start of Sequential Processing (R)

Input Output Reguest Facility . . . . . . -

9

LI I R B

IOREQ —-- Regquest an Input/Output Operatlon (S) .
CHECK -- Wait for and Test Completion of an I/0 Request
VCCW -— Define a Virtual Channel Command Word (O)
Manipulating Entire Data Sets . « « o o o o o o ¢ ¢ &
Copying Data Sets . . . s s e s & e =
CDS -- Copy Existing Data Set (S) e o s+ o = 8 e =
Bulk Output Facilities . « « o« ¢ o o o o s = o »
PR —— Print a Data Set (5) ¢ « o o o o = o o «
PU -- Punch a Data Set (S) « e 0 e s e e e s s e
WT -— Write a Data Set on Tape for Off-Line Print
Catalog Data Set Attributes . . . e s e s e e = @
CAT -- Create or Change Catalog Fntry {(S) « « « =«
DEL -— Delete Catalog Entry (S) + « ¢ « s o « « =
Disconnecting A Data Set From The System . . . « . .
CLCSE —-- Disconnect Data Set From User's Problem P

VAM OB1lY =« o o s o = « o =« o s 5 s s = s = =
BSAM and QSAM ONly =+ =+ « « o o = o o o o o
Removing a Data Set From the System . . . . . . .
ERASE -- Remove a Data Set from Direct-Access
REL -~ Release Data Set or Remove Job Library

SECTICN II: PROGRAM MANAGEMENT . . + « o o » «

virtual Storage Management . . o+ . . 2 o ¢ o o o o o .
GETMAIN -- Allocate Virtual Storage (B) « « o « o o«
FREEMAIN -- Release Allocated Virtual Storage (R) .
CSTORE —-- Control Section Store (5) « « « « « « o« =«
DCLASS* —- Specify Privilege Class (0) . « « « « &
RSPRY* —-- BRestore Privilege (0) . « o o o « o o o =«
CKCLS* -— Check Protection Class (0) « s s s s e
LSCHP* —-- list Changed Pages (R) « e o 8 o s o o =

Prograr Loading and Linking . . . . . e % e s e e o =
ALCON -- Generate an Adcon Group (0) .« e s e .
ADCOND -- Provide Symbolic Names for am Expli
ARM -- Initialize an Explicit Adcon Group (0) . . =«
CALL -- Call a Module (S) « « .« & e s e = = = e @
LCAD -~ Load and Retain a Module (R) c ® o o & o =
DELETE -- Delete a Loaded Module (R) e e s s e o =
SAVE -- Save Register Contents (0) e s o % o o ® =
RETURN -—- Return to a Erogram (0) « « o« « « o = o« »
DELET* ~- Enter DELETE Service Routine (0) « s e =
DLINK* -- LCynamic Linkage Request (0) . « . « . + &
ENTER* -—- Enter a Privileged Routine (0) . . . « «
INVOKE* —- Transfer Control (0) . « o « <« o o o « »
LIBESRCH* -- Locate Program Module in External Libra
BESUME* —~ ERestore Registers (0) .« ¢« « ¢ o o = & =
STORE* —— Store Register Contents (0) .« « « « « o &

Interrupt Handling Facilities . . . . c e o s s e s s
SIR -- Specify Interrupt Routine (S) e 6 e a o o @
SPEC -- Specify Progras Entry Conditions (5) . . .
SEEC -~ Specify External Entry Conditions (S) . .
SSEC -- Specify Supervisor Call Entry Conditions (S)
SAEC -- Specify Asynchronous Entry Conditions (S) .
STEC -— Specify Timer Entry Conditions (S) . . .« =«
SIEC -- Specify Input/Cutput Entry Conditions (S) .
DIR —- Delete Interrupt Routine (S) . « « « « « .+ »
SAI ——- Save and Inhibit (0) ¢« ¢ o o o« « o o« o = o =
RAE —— Restore and Enakle (0) « o o« o« ¢ o o« o o o =

INTINQ —— Interrupt Inguiry (0) . « « « « =

.
.
ro
-
-

o s e 8 e o

s & 92 8 o & 2 o

M s ¢ o o ¢ ¢ s o &

-
.
.
ram
.

Storage (5S)
From Program Lib

e 8 e e e

.

« o s 0

« 8 e s e s

« ® 8 & a2 8 &

.

.

a8 0 e & 2

.

-
-
.

s o & 8 8 LN e s e s

T T TG B
=

® 0 & 9 & ¥ 2 3 2 2 * s

(S)

L3

c1t Adcon Group

$ o 6 3 e * & & & ¢ s 2 . s & o 3 v 8

.

L] . o

[ T Y T T )

-

¢ 6 & B 8 6 & & 8 o s 8 & &

« ¢ & 2 s

U T S TR T N N 4]

e & o ¢ o 0

ﬁocnocti

S ¢ e 8 8 8 & 0 5 8 e 0 8 ¥ De & s s v 4 s b 2

0]
5 8 ¢ e & ¢ ¢ & & a4 " s ¢ & T

Hoc'.l.lll.

s ¢ v ¥ 8 5 8 s e e

)

USATT -- Give User Control of Attention Interrupts (0)
CLATT ~~ Give System Control of Attention Interrupts (O)
AETD -- Create an Attention Entry Table (0) & o« o ¢ o o s o

* 8 8 & & & & 8 s 8 3

(®)

. 8 8 & & &4 8 & & 6 8 & & o S & & % s 2 & s " o &

]

¢ & 8 8 6 & % 5 ¢ 8 s B v e

s s o s o

s 8 ¢ & & ¢ ¢ & 0 4 0 b

s & & 8 ¥ e a2 8 s s s s

® & & & & & 6 & o+ 20

" 8 0 & @ b 8 3 3 o ¢ 8 o 0 & &

Y Llst

« 8 6 9 & 0 o 8 &t 4 8 &

e & 8 s 5 e o s 8 & & ¢ s s ¥

* s & &

¢« & ¢ 2 8 4 € 5 2 0

* 8 & 8 0 ¢ o

*» & s ¢ ¥ & @

¢ & 9 v &

s ¢ e @

€ 8 3 0 8 B B B & & 6 0 8 & v 8 s 3 e 2 v 0

e ¢ 5 a2 o 8 s s 0 .

. e s s 0

.

s 8 & 0 s s s 4 8 ¥ ¢ 8 8 0 e & 5 ¥ & & ¢ 0

* ¢ 0 s F s

S 3 4 ¢ 8 ¢ 4 ¢ o & 82 b s s ® s & & @

L ]

« s 8

s & s o &

.

LI T S T T ]

L T S ]

"5 8 3 s s 8 s 4 s



ATPOL* --—
ITI* -- 1
PTI* ——- P
PCSVC* ~—-

Foll For Pending Attention Interrupt (nonstandard)
nhibit Task Interrupts (nonstandard) . . . « « « « &
ermit Task Interrupts (nonstandard) . . . . .

Enter Program Checkout Subsysten (nonstandard)

Transfer To Cormand Mode From Program Mode
PAUSE -- Enter Command Mode (R) . .
COMMAND —-- Enter Command Mode (R) .
EXIT -- Normal Program End (R) . .
ABEND —- ALnormal Task End (R) . .
OBEY -- Execute a Command or Command Statement (0)
CLIC* —- Read Command From SYSIN (Conversational)
CLIP* -— Read Command From SYSIN (O) . e = N
RTEN* -- Create Privileged Linkage Queue Entry (0)

Communication Between User Program and SYSIN/SYSOOT .
GATRD -- Get Record from SYSIN (5) s w e s o = o
GATWR —-— Write Record cn SYSOUT (5) « « o o o o

-

¢ s e 0
« o o 0
* s 0 8
¢« s s 8

* ¢ & o

® 8 s s s ¢

-

¢« o 8 s

“ s o 0

-

« s s 0

e & 3 8 e 0 0
.
.

LR T
LI T S Y

e o e & 0 ¥ 4 0
s e v e 9 s
« o o 0 s &

GTWAR —— ¥Write Record on SYSOUT and Read Response from SYJIN (S) o
GIWSR —-— Write Record on SYSOUT and Read Record from Terminal
SYSIN -- Obtain a Message From SYSIN or the Source List

PRMPT —- Prompt System to Display a Particular Message (5)

MSGWR —- Issue Message and Get Response (S) . . .
MCAST -- Modify Character and Switch Table (0) .
Communication With Operator and System Log .
WIC —- Write to Operator (S)
WTOR ~- HWrite to Operator with Reply (S)
WIL —- Write to Log (S) « « o o « &
Timing Maintepance . « o« « o o o o o =
STIMER —-- Set Interval Timer (O) -
TTIMER -- Test Interval Timer (0) . .
EBCDTIMR —-- Convert System Time into EBCDI
RECTIM* —— Read Time (0) . o « « o » « =

- - = - -

e K N I L
» Mmjs e ¢ ¢ 4 4 s
=]

o e o s s
]

Command Creation < » « . . . o . - . .
BPXD -— Create a BUlltln Procedure Key (0) -
GDV -- Get Default Value (R) e s 2 o o & s »
Systemr Oriented User Macro Instructions . . . « «

at

-

AWAIT* -- Tests for Event Completion and Return Control

TWAIT* —-- Tests for Completion of Event(0) . . .
VSEND* —— Inter-Task Communication(0) . . . . .« .

VSENDR* —— Inter-Task Communication with Response(0)

ATRSYS* ~-- E xtract From System Table(0) . . . .
XTRCT#* —-- Extract TSI Field(R) « ¢ o« o o = o o «
XTBXTS* —— Extract From TSI (O) o o « o o o o o o

APPENDIX A: EXIT LIST (EXLST) e o o o o o = s = o o o
Characteristics of Exit Foutines . . « + o o o « =
Exit-List EXample « ¢« o ¢ o o o o o o o 2 s o o o o

APPENDIX B: SYNCHRONOUS EREOR EXIT ROUTINE (SYNAD) -
Entry To SYNAD During ESAM orT QSAM Operations . .
Entry to SYNAD During VISAM Operations . . . .« .

APPENDIX C: ENL OF DATA ADLRESS (EODAD) . « « o « + =«
APPENDIX D: CONTROL CHARACTERS =« « o o ¢ o = o o o o

Machine Code . o o o o o s o o o a ©» s o = o« s « =
Extended USASI Code .« . « « « o« =«

.
.
.
.
.
.
.
.
.

APPENDIX E: LINKAGE CONVENTIONS
Proper Register Use . . . .
Reserving a Save Area .« . «
Reserving a Parameter Area
Implicit Linkage . . « .+ .
Explicit Linkage . . . . .
Explicit Deletion . . . . .

s & ° o & o o
+ 0 & s 2 0
e 8 & s e & 0
LI I S I I |
e s & s 0 0 s
¢ & o o e & 3
L T S Y S ]
« & e o % o
s 8 0 v e 0
¢« v ¢ & o e

APPENDIX F: DATA CONTROL BIOCK FIELDS « « ¢ &« o =
Sources for Providing Tata Set Attributes . . . .

.
.

.

L N A N Y ]

(S)

s 2 o 8 9 o 0

« e e

o & s 8 s 5 4 3 s o 8 & 4 e

* o & v e 4 s

. o ¢ ¥ & 0 T 8 0 8 8 o

SYSIN

.- e

s & & o 8 9 0 e & & o & s s e s 3
$ o 8 ¢ & 2 s« 6 8 & 2 s o & &
¢ o 8 o 8 & & 6 o R I T T S T T R ')

s s 8 8 2
¢ o 8 ¥ 4
L R Y}

LR T S S SR Y R ]

e e 0 o s 0

e 8 ¢ 8 5 & & & 3

o ¢ 0 & s

e ¢ & * 8 0 ¢ @

€ 8 0 s ® & & 2 & 3 ° 0 % & 8 ¢ o 0 ¥ s 0 2 0

s 0 o o o 2 &

s 8 o s 0

o & s

L T S 'Y

¢ 0 s & @ . 0 o 8 v s @

¢ s o s o & s

<172
. 172
.172
<172
-173
. 173
<174
<175
. 176
2177
.178
-178
.178
- 179
.179
.182
. 183
. 184
. 185
.188
. 191
-193
. 197
<197
.198
199
.200
.200
.203
. 204
-207

.208
.208
.211
.213
.213
.213
.213
-213
213
.213
.213

.215
.216
.217

.218
.218
221

.223

. 224
<224
. 224

225
«226
226
. 227
.227
.2?8
.228

«229
.229



Priority of SOUTCeS & 4 4 v v 4 v o o o o o

APPENLDIX G: DETAILED DESCRIPTION OF DDEF MACRO INSTRUCTION

APPENDIX H:

APPENDIX I: INTERRUPTION HANDLING FACILITIES .
Estaktlishing Interruption Routines .
Processing an Interruption . . . . . . . .
Communication &rea . « o+ ¢ o o . o .

EREIY ¢ ¢ o 4 6 4 ¢ o o o @ o o« o o =

L]
.
.
s s s @

APPENDIX J:

Generating the Library . . . . o « v o o o .
Using Symbolic Libraries . . . o« v & o o . .
Requesting Symbolic Library Services . . . .

APPENDIX K: SHARING VIRTUAL STORAGE DATA SETS .
TypesS Of IBterloCKS v v o « o o o & o o o « o
Levels of IDterloCksS v v v o v o o o o o o .
User Considerations « o o v o o o o o o « o

APPENDIX L: OPEN/CLOSE GENERATED PARAMETER LIST

INDEX e e 4 e e s s e e 4 4 e e e e e e a e

MACRO INSTRUCTION GENERATION OF LITERALS

THE TSS/360 SYSTEM MACRO AND COPY LIBRARY
System Macro and COPY Library Service Facilities

" e s s

.

L I} * s 0 s

« o o s s

¢ o o o @ LI T S T

s e o

« o o o

. o 2 s @

* s e &

¢« ¢ . 0 €« 3 ¢ 9

s o &

¢ s s s @

. 2 2 0

.230
+237
247

253
. 253
. 255
. 255
. 255

256
. 257
« 257
-.257
.258

«260
«260
260
.261

.262
.263



FIGURES

Figure 1. Time Sharing System/360 SETVICES « o o o o = = a o o » o = = « « =« « 21
Figure 2. Save Area layout and Word Contents e
Figure 3. TSS/360 Interruption Handling FAacilitie@S .« « = o o o o = = = = « » «254
Figure 4. Information Available Upon Entry to an Interrupt Routine . . . . . .256
Figure 5. System Macro and COPY Library Symbolic Component Format e e = « = 2257
Figure 6. Format of a Line in a Line Data Set e e e e e s & = e s o o = = = 2258
TABLES

Table 1. Value Mnemonics and Their Permissible Operand Forms . . « « o = « =« » 11
Takle 2. Acceptable record formats for QSAM and the PUTX Macro Instruction . . 88
Taktle 3. Final Magnetic-Tape PoSitions .« « ¢ « o = o o o o = o < = @ . - - 2120
Table Uu. Factors Determining Magnetic-Tape Positioning For BSAM and QSAH - - <127

Table 5. Return Codes from All GATE Macro Instructions . . .+ « ¢« < « « » = = . 181
Table 6. Conditions Upon Exit =-- Routine Entries . . « « « o ¢ o o « o ¢ o » <216
Takle 7. TData Event Control Block (DECB) . . « « + = . . e e o o s = o 220
Tabkle 8. ©ICB Operands, Their 59601f1cat10n, Access Hethods, and Alternate

Sources (Part 1 Of 2) o o o o = o o o o o o s o o o o s o o o = & o o o o = & - .231
Table 9. Operands for DDEF Macro Instruction . . . . . . . . e = e o o o o <238
Table 10. Literals Generated by Macro Instructions (Part 1 of b) e e e o s s = <249
Tatle 11. Effect of OPEN Options on Data Set Interlocks . « « « » - « « = ¢ - .262



PART I: USER MACRO INSTRUCTIONS

SECTION I: INTRODUCTION

The TSS/360 user macro instructions provide two basic services; data
set management and program management. These two services and the
various management functions performed by each are summarized below.

DATA SET MANAGEMENT

e Define a Data Set to the System - by introducing a data set to a
task and describing the characteristics or attributes of a data set,
such as its record organization, disposition (i.e., OLD or NEW,
etc.), and data set name, for future system use. TSS will subse-
quently (after the data set has been connected to the system)
reference the indicated attributes to determine the appropriate
access method routines and other control information.

e Connect a Data Set to the System - by making the attribute specifi-
cations, describing a data set, available to the system, thereby
logically connecting the data set to the system. Appropriate access
method routines are initialized, labels are processed (if speci-
fied), and the data set is positioned for user processing.

e Access a Data Set — by using the macro instructions associated with
the appropriate VAM or SAM access method or provide your own input/
output device management routines through use of the IOREQ macro
facilities. A user can store, retrieve, or modify data sets using
the macro instructions associated with the access method he uses.

e Manipulate an Entire Data Set - rather than jindividual records
within a data set. An entire data set can be manipulated and trans-
ferred from one area of virtual storage to another, to punched
cards, printer listings, or magnetic tape devices.

e Catalog Data Set Attributes - by recording certain predefined data
Set attributes in catalog entries so that the data set can be subse-
quently located by using only its name, without redefining all of
its attributes to the system.

e Disconnecting a Data Set From the System - tells the system a user
has finished processing a data set and, permanently or temporarily,
disconnects the system from the control block (DCB) containing the
description of the data set's attributes and access method
specifications.

e Removing a Data Set From the System - causes a data set to be phys-
ically removed from the system and releases the storage areas, on
which it was recorded, to the system for future use.

Part I: User Macro Instructions 5



PROGRAM MANAGEMENT

e Virtual Storage Management - allows a user to acquire or release
virtual storage in units of pages or 8 byte multiples, or to trans-
form contiguous virtual storage bytes into an object module consist-
ing of a single control section.

e Loading and Linking - macro instructions allow a user to explicitly
or implicitly load program modules and establish standard linkage
between calling and called program modules.

e Interrupt Handling Facilities - allow programmers to assume control
at specific types of interrupts and execute special user coded
interrupt servicing routines instead of the system provided inter-
rupt servicing routines.

e Transfer to Command Mode - from program mode allows a user to inter-
rupt a program's execution, either temporarily or permanently, and
pass control to command mode for subsequent processing.

¢ Control Communication With SYSIN and SYSOUT - permits a user to pass
data, messages, and commands, to and from a coded program to SYSOUT
and SYSIN devices.

e Communication With Operator and System Log - allows a user to pass
messages, issued during a program's execution, to the system opera-
tor, and to record those messages in the system operator's log.

e Timing Maintenance - provides a user with the ability to set timers
which can measure the time of a task's execution or the elapsed
calendar time.

e Command Creation - allows a user to create his own commands and,
once created, issue them at his terminal.

* System Oriented User Macro Instructions - are available to all
users, but are meant to be used only by system programmers; there-
fore, these macro instructions are only briefly mentioned here, but
their detailed descriptions appear in the System Programmer's Guide.




SECTION II: THE MACRO INSTRUCTION LANGUAGE

Macro instructions for TSS/360 are processed by the assembler using
IBM-supplied macro definitionms.

Processing a macro instruction by the assembler is called the expan-
sion of the macro instruction. Expansion results in fields of data and
executable instructions, called the macro expansion. Fields of data,
called parameters, specify the exact nature of the service to be pex-
formed and are contained in either registers (parameter registers) or
data areas (parameter lists). If the parameters are contained in regis-
ters, only registers 0 and 1 may be used. If the parameters are con-
tained in a parameter list, the address of that list is placed in
register 1 and referred to by the called service routine.

MACRO INSTRUCTION FORMAT

System macro instructions, like assembler instructions, are written
in this format:

Name Operation|Operand

o e e s
[ S S

Name Field

The name field of the macro instruction may contain a symbol or
remain blank. WNormally, this symbol is the name associated with the
first executable instruction of the macro expansion.

Operation Field

The operation field contains the mmnemonic operation code of the macro
instruction. This code may be a string of not more than eight alphamer-
ic characters, the first of which is alphabetic.

Operand Field

The operand field may contain no operands, or one or more operands
separated by commas; the two types of operands are: positional and
keyword.

POSITIONAL OPERANDS: Positional operands must be written in a specific
order; for instance:

EXAMPLE A,B,C

Assembly-time processing of operands A, B, and C is determined by
whether they are the first, second and third operands, respectively. If

Part I: User Macro Instructions 7



the second operand (B) is omitted, the user must supply the second comma
to maintain the proper position for the third operand (C). Blanks may
not be embedded in the positional operand field:

EXAMPLE A,.C

If the last positional operands are omitted, delimiting commas need
not be written. For example, if operands B and C are omitted, the macro
instruction may be written:

EXAMPLE A

KEYWORD OPERANDS: The keyword associated with a specific keyword
operand uniquely identifies that operand to the assembler. Therefore,
these operands may be written in any sequence. A keyword operand is
written as a keyword, shown in each macro instruction description, imme-
diately followed by an equal sign and its value:

EXAMPLE AREA=X, LENGTH=100

MIXED OPERANDS: An operand field may contain both positional and key-
word operands; however, all positional operands must precede all keyword
operands. For example:

EXAMPLE A,B,C,AREA=X,LENGTH=100

THE RULES FOR OMITTING POSITIONAL AND KEYWORD OPERANDS APPLY TO MIXED
OPERAND FIELDS; IF OPERANDS B, C, AND AREA ARE OMITTED:

EXAMPLE A,LENGTH=100

OPERAND SUBLISTS: A sublist is one or more positional operands, each
separated by commas and the total list enclosed in parentheses. The
entire sublist is considered as one cperand in that it occupies a single
position in the operand field or is associated with a single keyword.
The contents of the sublist are processed similarly to positional
operands.

The following operands are sublists:

(A,B,C)
(»)

Note that the sublist (aA) above consists of only one operand. When a
macro instruction description shows that an operand is written as a sub-
list, the enclosing parentheses must be written even if only one element
appears in the sublist.

Macro Description Notational Symbols: Notational symbols in the operand
field of macro instruction descriptions assist the user in showing how,
when, and where an operand should be written. The notational symbols
are: vertical stroke, shown as |; braces { }; brackets [ ]; ellipsis,
shown as ..., and underscore -

1. Vertical stroke means "exclusive or."™ For example, A|B means that
either the character A or the character B, but not both, may be
written. Alternatives are also indicated by operands being aligned
vertically, as shown in the next paragraph.



2. Braces denote grouping. They are used most often to group alterna-
tive operands or alternative operand forms. For instance, the fol-
lowing two operand descriptions are equivalent:

{INPUT | OUTPUT}
INPUT
OUTPUT

3. Brackets denote options. Information enclosed in brackets may
either be omitted or written in the macro instruction, depending on
the service to be performed.

In the following case, the operand of the EXAMPLE macro instruction
is optional and need not be supplied. However, if the operand is
supplied, it must be one of the alternatives grouped in braces.

v \ L
| Name Operation|Operand
i

[symbol] |EXAMPLE | [mode- {INPUT | OUTPUT}]

1

-
b e o e wnd

4. An underscore means that if an operand is not specified, the unde-
rscored option is assumed. The underscored word, INPUT, in the
above example indicates that INPUT is assumed if the operand is
omitted.

5. The ellipis denotes the optional occurrence of the preceding syn-
tactical unit one or more times in succession. If the syntactical
unit consists of one term, it is followed by a comma and an ellip-
sis. For example,

dcb-adr,...

indicates that the term dcb-addr can be repeated with commas
separating each term. No comma is placed after the last term.

If the syntactical unit consists of more than one term, it is enc-
losed in braces -- {} —- to indicate the unit that may be repeated.
The comma and ellipsis are placed outside the braces. For example,

{dcb-addr,opt-code}, e«

indicates that the unit dcb-addr,opt-code can be repeated with com-
mas separating each unit. No comma is placed after the last unit.

6. Upper-case (capital) letters indicate the portions of the operand
that must be written exactly as shown. For example, the operation
field and coded values in the operand field must always be trans-
cribed in upper-case letters.

7. Commas and parentheses must be written as shown in an operand
field. They are delimiters, not notational symbols.

Macro Description Value Mnemonics

Value mnemonics help the user remember the forms a particular operand
may assume. Eleven value mnemonics are used in this publication.

Part I: User Macro Instructions 9



relexp
addr
addrx
addx
integer
absexp
value
text
code
symbol
characters
name
specsym
alphnum

In macro instruction descriptions in this publication, each position-

al operand is specified by a meaningful name hyphenated with a value

mnemonic, as illustrated:

Name

1 T
| Operation|Operand
1 ]

= cmen g s g

Ll 1
[symbol} | EXAMPLE |name-value mnemonic
1 [}

Each keyword operand is specified by the keyword, an equal sign, and
a value mnemonic, as illustrated:

e s s e

Name

L L]
| Operation|Operand
[l ]

[ . s s

L T
[symbol] | EXAMPLE |KEYWI=value mnemonic
] L

[

One or more operand forms may be substituted for each value mnemonic.

For example, the value mnemonic, relexp, denotes that a relocatable

expression may be written as the operand form; the value mnemonic, addx,
specifies that an explicit address or an implied address may be written.

The 10 operand forms are:

Table 1 lists the value mnemonics and their permissible operand
In the subsequent text each operand form is fully described.

forms.

10

relocatable expression
register notation
explicit address
implied address
symbol

decimal integer
absolute expression
code

text

characters

data set name

special symbol
alphameric characters



Table 1.

Value Mnemonics and Their Permissible Operand Forms

Value Mnemonics

Operand
Forms

relexp | absexp addr addrx addx

integer

value text code symbol |characters| name | alphnum | specsym

Relocatable

(Indexed)

Expression X X

Regisf‘er X X X

Notation

Explicit N
Address X X

Implied Address X X )

Symbol

Decimal
[nteger

Absolute
Expression

Code

Text

Characters

Data Set
Name

Alphameric
Characters

Special
Symbol

Note: An X indicates that the operand form may be written,

Relocatable Expression:

The value of a relocatable expression would

change by n if the program in which it appears is relocated n bytes from
its originally assigned storage area. 2All relocatable expressions must

have a positive value.

A relocatable expression may be a relocatable

term. A relocatable expression may contain relocatable terms -- alone
or in combination with absolute terms —-- under the following conditions:

1. There must be an odd number of relocatable terms.

2. All relocatable terms but one must be paired. Pairing is described

later in "Absolute Expression."

3. The unpaired term must not be directly preceded by a minus sign.

4. A relocatable term must not enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable value. This
value is the value of the odd relocatable term adjusted by the values
represented by the absolute terms and/or paired relocatable terms asso-

ciated with it.
catable term.

The relocatability attribute is that of the odd relo-

Complex relocatable expressions are also permitted. Refer to

Assembler

Lanquage.

In the
FRANK are
absolute.

following examples of relocatable expressions, SAM, JOE, and
in the same control section and are relocatable; PT is

Part I: User Macro Instructions 11



SAM
SAM-JOE+FRANK
JOE-PT*5
SAM+3

Note that SAM-JOE is not relocatable, because the difference between
two relocatable addresses is constant.

Register Notation: Register notation is written as an absolute expres-
sion enclosed in parentheses. The absolute expression, when evaluated,
must be some value 2 through 12, indicating the corresponding general
purpose register.

In these examples of register notation, SAM and JOE are relocatable
and PAL is absolute.

(5) indicates register 5
(SAM-JOE)

(PAL)

(PAL+3)

Explicit Address: The explicit address is written in the same form as
an assembler language operand:

a (b,c)

!

base register
index register
displacement
Examples of explicit addresses are:

2(0,5)
0(2,4)

Implied Address (indexed): An implied address is written as a symbol,
optionally indexed by a specified index register.

Examples of implied addresses are:

GUPOFF
ALPMAY (4)

Note that ALPMAY is indexed by register 4.

Symbol: A symbol may be a symbolic address (i.e., a single relocatable
term) , such as the name of an instruction in an assembler-language pro-
gram, or it may merely be a character string used for identification,

not location (such as the ddname parameter of a DCB macro instruction) .

In TSS/360, the alphabetic characters are the letters A-Z, and $, @,
and #. The alphameric characters are the alphabetic characters plus the
digits 0-9.

The symbol is written as a string of up to eight alphameric characters,
the first of which is alphabetic. Embedded commas and blanks are not
permitted. Symbols beginning with the characters CHD may not be used,
since symbols beginning with those characters are reserved for system
use. Examples of symbols are:

DDNAME 1
ROGER

12



LOOP12
START
#1

Decimal Integer: The operand may be written as a whole decimal number;
€.g9., 5, 31, 127, etc.

Absolute Expression: An absolute expression may be an absolute term or
any arithmetic combination of absolute terms. An absolute term may be
an absolute symbol or any self-defining term. All arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relocatable terms alone or in com-
bination with absolute terms, under these conditions:

1. There must be an even number of relocatable terms in the
expression.

2. The relocatable terms must be paired. Each pair of terms must have
the same relocatability attribute; i.e., they appear in the same
control section of an assembly. Each pair must consist of terms
with opposite signs. The paired terms do not have to be contigu-
ous, e.g9., RT+AT-RT, where RT is relocatable and AT is absolute.

3. A relocatable term must not enter into a multiply or divide
operation.

Pairing of relocatable terms (with opposite signs and the same relo-
catability attribute) cancels the effect of relocation. The value
represented by the paired terms remains constant, regardless of program
relocation.

Example: In the absolute expression A-Y+X, the term A is absolute,
and the terms X and Y are relocatable with the same relocatability
attribute. If A equals 50, Y equals 25, and X equals 10, the value of
the expression becomes 35. If X and Y are relocated by a factor of 100,
their values become 125 and 110. However, the expression still evalutes
as 35 (50-%¥25+110=35).

An absolute expression reduces to a single absolute value.

In these examples of absolute expressions, JOE and SAM are relocat-
able and defined in the same control section; BERNY and DAVE are
absolute:

331

DAVE
BERNY+DAVE-83
JOE-SAM
DAVE+4+BERNY

Code: A code is written exactly as indicated in the macro instruction
description. For example:

r Ll L] 1
| Name | Operation|Operand |
i [ I .'
) ) |

| [symbol] | FTBAL | scores-code |
L i 1 g
scores

specifies the desired action

Part I: User Macro Instructions 13



TD - Touchdown
FG -~ Field goal
HT - Half-time is called

The macro instruction might be written in a program:

SAM FTBAL TD
FTBAL FG
DUME FTBAL HT

Text: A text operand is written as a string of characters enclosed in
apostrophes. Embedded blanks and special characters are permitted. Two
apostrophes or two ampersands must be used to represent one apostrophe
or one ampersand in the character string. The text operand may not
exceed 255 characters including the enclosing apostrophes. For example:

'AREA, PCB, 132, ,1256'

'DO &€& DON''T'

Characters: The character operand is written as a character string.
Embedded commas or blanks are not permitted. Two apostrophes or two
ampersands must be used to represent one apostrophe or one ampersand in
the character string. The character string may not be enclosed in apos-
trophes. For example:

CUBTDAVE+HEINZ +JOHN*830PMOT

DOEEDON" ' T
Data Set Name: The name of a data set or a group of data sets. The
rules for writing data set names are presented below; the types of names

that can be written for each macro instruction are described under each
macro instruction's description.

Fully qualified name uniquely identifies one data set.

1. Stand-alone data set name identifies a data set that is not a
member of a partitioned data set nor a generation of a generation
data group. The name of a stand-alone data set is written as a
series of symbols separated by periods. For example:

DATASET.TRIAL.TEST1
TERI.ROGER.LAURIE
A.B.C.

The rightmost symbol is the data set's simple name (TEST1,
LAURIE, and C above); the other symbols are qualifiers. 1Imn TSS/
360, for cataloging purposes, the maximum number of characters in
a data set including periods, is 35. The maximum number of qua-
lifiers for a one-character name is 17.

Note: Data set names created under the IBM System/360 Operating
System can contain a maximum of 44 characters; if data sets with
names greater than 35 characters are to be cataloged in TSS/360,
the user should employ the renaming facility of the CAT macro

instruction or CATALOG command to define a suitable TSS/360 name.

2. Partitioned Data Set and Member Name identifies a data set that
combines individual data sets, called members, into a single data
set. The partitioned organization allows the user to refer to
either the entire data set or to an individual member of the par-
titioned data set.

L



The rules for writing the name of a partitioned data set are
the same as for writing those of a stand-alone data set.

The rules for writing a member name vary with each macro
instruction that can manipulate members. Sometimes (as in LOAD
and DELETE) only the simple member name (a symbol) is written.
The full name is not required because the user has indirectly
defined the partitioned data set (library) in which the module
resides by assuring that the library is on the program library
list prior to issuing those commands.

The user could write
LOAD SORTR

if he has previously arranged that SORTR was in a library cur-
rently on the program library list.

In other macro instructions (e.g., CDS), the user must give the
fully qualified member name. This consists of the name of the
partitioned data set suffixed by the simple member name in
parenthesis. For example:

HQW (ONETRY)
G.H.AB (H)

Here HQOW and G.H.AB are partitioned data sets with members ONE-
TRY and H, respectively.

The name of the partitioned data set is written with the same
rules as for a stand-alone data set. The parentheses and memb-
er name are merely considered as an appendage to that name.

Generation Names identify data sets which are part of a genera-

tion data group. These data sets can be referred to on an abso-
lute or relative basis:

a. Absolute Generation Names are written as the name of the

generation data group followed by a period and the characters
GxxxxVyy, where xxxx is a four-digit decimal generation numb-
er, and yy is a two-digit decimal version number. For
example:

HURST.LINER.TT.G0001V00
HJ.LAU . WW.G0003VO1
HARQ.GO147V03

The characters GxxxxVyy are considered a fixed-part of the
overall name. The name of the generation data group is a par-
tially qualified name applicable to all generations in the
group.

If the generation is a partitioned data set, a member (€.g..,
JOE) within that data set is referred to as follows:

A.B.C.GxxxxVyy (JOE)
Relative Generation Names are written as the name of the

generation data group followed by the appropriate relative
generation number enclosed in parentheses, as

G.D.G (0)

The relative generation number of the most recent generation
is (0) ; the generation just priox to that is (-1); the one

Part I: User Macro Instructions 15



before that is (-2), etc.; and a new generation to be added is
(+1) . For example:

GOST.UU.L19P (+1)
GOST.UU.L19P (- 3)
MRQ.T.L5.SWIM (0)

If the generation is a partitioned data set, a member within
that data set is referred to as follows:

SEAT (-3) (JOE)
where JOE is the member in question.

Partially qualified names refer to all data sets having the partially
qualified name as their common higher-order qualifier.

1. Generation bata Group Name is the name that is common to each
generation in the group. Generation data group names are
restricted to a maximum of 26 characters including periods.

2. Other Partially Qualified Name can also be used to refer to two
or more data sets. For example, the partially qualified name
GO.AB14 can be used to refer to both of the following data sets:
GO.AB14.A and GO.AB14.B. If these were the only two of a user's
data sets with the same higher-order qualifier, GO.AB14, and he
wished to erase them both, he could do so merely by specifying
GO.AB14 in the ERASE macro instruction.

Special Symbol: A special symbol operand may consist of any string of
from one to six alphameric or special characters (except for the tab,
blank, comma, backspace, equal sign, and right and left parentheses) .
For example:

FORMNO
EH*/K

Alphameric Characters: An alphameric-character operand is written as a
string of alphameric characters, the first of which need not be alpha-
betic. For example:

A0O764
10E0DY

The limit on the number of characters is given in the description of
each macro instruction in which it is used.

OPLIST OPERANDS: 1In a number of macro instruction descriptions in this
publication, the operand field is specified as:

oplist-jtext

;
|
5
|
| addr
L

R Spum—— |

This format implies that a list of keyword and/or positional operands
may be written as fields of a character string. Also, the character
string itself (enclosed in apostrophes) or the address of the string may
be written as the oplist operand, depending on whether the text or addr
form of the operand is chosen.

If oplist is presented as a character string (i.e., text operand
form) the macro expansion places it in the assembled program followed

16



byan end-of-message code, and loads a pointer to the string in register
1. 1If oplist is given as an address (i.e., addr operand form) the
expansion places that address in register 1. 1In this case, the user
must define the operands elsewhere in the program and provide an end-of-
message code.

To refer to and manipulate oplist macro instruction operands in cod-
ing, the address option of the operand is used, permitting the operand
character string to be set up as a series of adjacent fields, each with
its own label.

The string must end with a hexadecimal 27, which serves as an end-of-
message code. Any unused space in each of the adjacent fields in the
string must be filled with blanks to the maximum size of that field.
Unlike other operand forms, all commas in an oplist operand must be
written even if parameters are defaulted. A typical operand string
might be coded:

OPLIST DC C'first operand’
OPLIST1 DC C',second operand’
OPLISTN DC C',n operand'

DC xX'27"

TYPES OF MACRO INSTRUCTIONS

Most system macro instructions are of two basic types: R-type
(register) or S-type (storage). In this publication, the letter (R) or
(S) follows the name of each macro instruction description to indicate
its type. Macro Instructions that are neither R- nor S-type, referred
to as "other™ macro instructions, are denoted by (0) in their
descriptions.

Some macro instructions generate literals in their expansions. Con-
sequently, the rules for literal pool coverage must be followed. Refer
to Appendix H, and to "Terms and Expressions" in Section 2 of Assembler

Lanquage.

R-Type Macro Instructions

An R-type (register) macro instruction is used when all required
parameters can be contained in the two parameter registers, 0 and 1. An
R-type macro instruction does not generate a parameter list; the parame-
ters are placed in the parameter registers by instructions in the macro
expansion. Execution time may be saved if the user places the data in
the parameter registers as the result of previous operations before
executing an R-type macro instruction.

Address operands in R-type macro instructions are always classified
as addrx or addx. This arrangement allows the user to employ indexing,
although the addresses passed in R-type macro instructions must be prop-
erly covered; i.e., the base register used for the passed address must
contain the proper value to ensure that the address refers to the
desired location in virtual storage.

For example, assume there is an R-type macro instruction, RTYPE,

which will contain an address "area" in register 1 and the "length" of
that area in register 0. 1Its external macro description would be:

Part I: User Macro Instructions 17



r T T
| Name |Operation|Operand
N L [

[ S ——

T L} T
| (symbol] |RTYPE |area-|addrx|,length~[value
! | J (m (0)

Special Reqgister Notation: The user's problem program might be written
so that one or both of the parameters already exist in the proper para-
meter register when the macro instruction is issued. 1In this case, (1)
or (0) is written as the operand. The notation (1) and (0) is referred
to as special register notation. Registers 1 and 0 cannot be used in a
macro instruction unless special register notation is shown in the macro
instruction description.

S-Type Macro Instructions

An S-type (storage) macro instruction is used when the number of
parameters to be passed to the called routine cannot be contained in the
two parameter registers. The parameters are placed in a parameter list
whose address is passed to the called routine in register 1.

There are three forms of the S-type macro instruction:
1. The Standard form
2. The L-form (Parameter 1list only)
3. The E-form (Executable code only)

Note: All S-type macro instructions may be written in L- and E-forms
unless otherwise stated in the individual descriptions.

THE S-TYPE STANDARD FORM: The S-type standard form macro instruction
generates both the parameter list required by the called routine and the
linkage to that routine. If the S-type macro instruction is coded in a
module that has a PSECT, the parameter list is generated in the PSECT.
In this case, the PSECT must be properly covered by a base register. If
the module has no PSECT, the parameter list is generated in-1line and
coding is generated to branch around it. If an S-type macro instruction
is coded in a PSECT, the parameter list is generated in-line and coding
is generated to branch around it.

Address operands in S-type standard form macro instructions are
always classified as addr. Hence, they may not be indexed, and the
user's problem program is not responsible for providing cover registers.

As an example, assume an S-type macro instruction, STYPE, that
expects the addresses of two storage areas, "input" and "output,® and
the "length" of those areas. Its external macro description might be:

r T T
| Name |Operation|Operand
L 1 4

[ e e

1 1 L)
| [symbol] | STYPE | input-addr, output-addr, length-value
L 1 L

THE_S-TYPE L-FORM: The L-form macro instruction creates a parameter
list. E-form macro instructions then link to the service routine and
point to the parameter list that is generated by the L-form macro
instruction.

The assembler recognizes an L-form macro instruction by the keyword
operand MF=L in its operand field.

18



Because the L-form macro instruction generates only a parameter 1list,
operand types that require executable code, such as register notation,
are prohibited.

There is an implied difference in the kinds of operands required in
the external macro description when using the various forms of the S-
type macro instruction. Where the standard form indicates addr and
value operands (i.e., register notation is allowed) , it is implicitly
understood that L-form macro instructions allow only relexp and absexp
operands (i.e., register notation is not allowed) .

The external description of the L-form STYPE macro instruction becom-
es, by implication,

T ¥ T 1
| Name | Operation |Operand |
L ] 1

1] ] 1 "
| symbol |STYPE |[[input—relexp],[output-relexp],[length—absexp],] |
| ] | |
I | | MF=L {
L i 1 4

Note that the name field is required in the L-form because it usually
becomes the label of the generated parameter list and is referred to by
the E-form.

All operands of an L-form macro instruction are usually optional. It
is assumed that operands that are omitted in the L-form will be supplied
in the E-form macro instruction.

The L-form macro instruction generates the parameter list at the
place the macro instruction is encountered. Because the L-form expan-—
sions contain no executable instructions, they should be placed in the
program so that they do not receive control; €.g., among the DSs or DCs.
An L-form macro instruction should never be written in a read-only con-
trol section.

THE S-TYPE E-FORM: A parameter list created by an L-form macro instruc-
tion, or by any other means, may be referred to by an E-form macro
instruction. The user can update a parameter list by supplying operands
in the E-form macro instruction.

The assembler recognizes an E-form macro instruction by the presence
of the keyword operand in its operand field:

M

List should specify the location of the parameter list to be used by the
E-form macro instruction. If (1) is written, register 1 should be
loaded with the address of the L-form parameter list before execution
ofthe macro instruction. The symbol in the name field of an L-form
macro instruction becomes the name of the parameter list.

MF= (E, list- addrx})

Once again, there is an implied difference in kinds of operands
required. When standard form requires addr and value operands, the E-
form requires addrx and value operands. The E-form thus allows the user
to index addresses; however, proper cover registers must be provided.

The external description of the E-form STYPE macro instruction becom-
es, by implication,

Part I: User Macro Instructions 19



r 1 1
| Name | Operation|Operand
1 L [
r 1 1
(symbol} | STYPE |[[input-addrx],[output—addrx],[1ength—value],]

1 |
| |
] !

o —— . S .
(SIS Sp———

MF= (E,list- {addrx})
(M

All operands are individually optional. The position of positional
operands supplied in the E-form macro instruction causes the generation
of executable instructions that replace the corresponding parameters in
the parameter list of the L-form macro instruction with their new
values.

Other Macro Instructions

The system macro instructions that cannot be classified as either
R-type or S—type are referred to as "other", denoted by (0) in the macro
instruction descriptions.

For example, the SAVE macro instruction does not produce parameters
that pass to a called program. Its expansion results in instructions in
the user's program that completely perform the requested service. Simi-
larly, the DCB macro instruction only defines a data area. It is, in
effect, an implied S-type L-form macro instruction.

20



PART II:

FUNCTIONAL MACRO INSTRUCTION DESCRIPTIONS

The major functional groups into which macro instructions fall are

data set management and program management.

A summary of these func-

tional groupings is indicated in- Figure 1

TIME SHAKING SYSTEM/360
ASSEMBLER USER MACRO INSTRUCTIONS

T A
] DATA SET MANAGEMENT |
L 4
¥ 1
|Defining Data Set(s) |
L ']
L R}
| DDEF CDD FINDDS* |
| DCE DCBD FINDJFCR* |
— 4
IConnecting Data Set(s) to Systen |
H 1
i OPEN |
- 1
|Accessing Data Set (s) i
L J
L R
1 ¥sSanm VIsau vPAY I
| GET GET FIND i
} PUT PUT STOW [}
| PUTIX READ |
| SETL HRITE IOREQ |
| SETL IOREQ |
| ESAM ESETL CHECK |
[} REAL DELREC VCCW |
] KRITE RELEX |
| CHECK |
| GETEOOL QSAM 1
f GETEUF GET |
| FREEBUF PUT |
| FKEEPOOL PUTX |
| BSE RELSE

[} CNTEL TRUNC |
| FECV CNTRL {
{ POINT PRTOV |
} NOTE SETL i
| PRICY |
| |
| |
| |
F 4
|Manipulating Entire Data set (s) |
b 4
¥ T 1
| Copying Data Set(s) | Bulk Output |
= t 4
| | PR 1
! | PU |
| Ccbs ] WT |
k n 4
|Catalcging Data Set Attributes |
- 1
| CAT |
i DEL |
— 4
|Disconnecting Lata Set (s) From System |
b 1
| CLOSE |
F 4
|Removing Data Set(s) From System |
F 1
i ERASE |
] REL |
i 1]

*Althcugh these instructicns are
systen programmers; therefore,
a detailed description of these

Figure

available to all users, they are e
refer to Systen Programmer!'s Guide,
macro instructions,

r =1
] PROGRAM CGNTROL MANAGEMENT ]
- -4
|Virtual Storage Management |
L 4
L a
| GETMAIN DCLASS* CHKCLS* |
| FREEMAIN PSPRV* LSCHP* |
| CSICRE 1
- -
|Program Linking and Loading |
F -
| ATCCND DELETE ENTER* |
| ADCCN SAVE RESUME* }
| ARM RETURN LIBESRCH* |
| CAlLl DELET* STORE* |
| LOAT DLINK* |
- -
IInterrupt Handling |
- o
[} SIEkE SIEC USATT |
| SPEC DIR AETD |
] SSEC SAT ATPOL* |
| SEEC RAE ITI* |
| SAEC INTINQ PTI* |
[} STEC CLATT PCSVC* |
— -4
|ITransfer to Ccrmand Mode |
H 1
| PAUSE ABEND CLIC* |
i COMMAND OBEY CLIP* [}
| EXIT RTRN* |
- 1
[Communication With SYSIN/SYSOUT |
L 1
L al
] GATED GTHWSR MSGUWR |
{ GATHR SYSIN MCAST |
| GIWAR PRMPT |
H |
|ICommunication With Operatcr and Log |
| S |
1 WTO |
1 WTOR |
[} WTL |
t 1
|{Timing Maintenance |
— 4
] STIMEF EBCLTIME §
] TTIMEF REDTIM* |
e I
r )
|Command Creaticn |
t -4
| BPXD 1
| GDV i
F 4
|Systen Oriented Macro Instructions ]
- -4
i AWAIT* VSENDR* XTRXTS* |
| TWAIT* XTRSYS* XTRCT* i
| VSEND* |
[® -4

1. Time Sharing System/360 Services

Part II:

Functional Macro Instruction Grouping

nployed primarily by
Form C28-200€&, for

21



SECTION I: DATA SET MANAGEMENT

This section describes TSS/360 macro instructions available to the
user to facilitate data set management. To enhance user understanding
of these macro instructions, they are presented in functional groups
that reflect their primary use in the system.

DEFINING A DATA SET TO THE SYSTEM

Certain characteristics of a data set must be described to TSS/360
Data Set Management and Task Management routines before a user may emp-
loy those management facilities to process and manipulate his data sets.
These data set attributes can be furnished to the system from two to six
different sources depending on whether the data set is a new data set or
a data set that has been previously defined to the system. The various
sources and their priorities are described in detail in Appendix F. The
two major sources (i.e., and the only mandatory sources) provided for
users to facilitate describing these data sets to the system, are the
DDEF and DCB macro instructions respectively. These macro instructions
and the CDD and DCBD instructions, which can be used with them, are
briefly described below.

DDEF describes certain attributes of a data set to the system and
defines or introduces that data set to a single task. Every data
set referenced within the framework of any one task (i.e., from
LOGON to LOGOFF) must be defined to that task via system or user
issuance of the DDEF macro instruction (or command) . In addition
to providing unique attribute information, such as DSNAME, which
cannot be supplied by any of the other sources for attributes,
the DDEF macro instruction or command can also be used to furnish
any attributes which are not furnished by the DCB macro
instruction.

DCB reserves a space in virtual storage in which the attributes of
the data set to be processed are to be placed and optionally
describes the attributes of the data set (in conjunction with the
DDEF macro instruction or command) to the TSS/360 management
facilities.

CDD retrieves one or more DDEF commands from a line data set (created
by issuance of a DATA or MODIFY command) that consists of pre-
stored DDEF commands only. The CDD macro instruction (or com-
mand) processes these commands as if they were just issued at the
terminal and thereby defines their related data sets to the sys-
tem in the same manner as the DDEF macro instruction.

DCBD used to facilitate easier processing or modification of the data
control block created by a DCB macro instruction. The macro
instruction generates a dummy control section that provides the
user with the symbolic names used by the system for referencing
the fields in a data control block. A user can then use these
labels to address the fields of any data control block he con-
nects to the Dummy control section via a USING instruction.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to defining a data set and the related macro instruc-
tions can be found in IBM System/360 Time Sharing System: Assembler
Programmer's Guide, Form C28-2032.

22



DDEF -- Define a Data Set (S)

The DDEF macro instruction defines a data set and describes its
characteristics to the system. Every data set that is referred to by an
object program during execution must be defined by a DDEF macro instruc-
tion or command. All public VAM data sets are automatically cataloged
at DDEF time. The system creates the catalog entry and provides the
user with unlimited access. Each DDEF macro instruction is valid only
during the session in which it is issued; thus data sets defined for one
session must be redefined at every session that involves reference to
them.

Note: The following description applies to the DDEF macro instruction
used to define a standard data set on a public volume. (The standard
data set is one that is VAM organized, on direct-access public storage,
arranged in units of pages, and has standard labels.) To define non-
standard public data sets or any private data set, refer to the detailed
description of the DDEF macro instruction given in Appendix G.

) T T 1
| Name | Operation|Operand |
.L~ + } 1
| [symbol] | DDEF |oplist—[text |
| | | addr |
L 1 4 4
oplist
specifies the list of operands. They are:
r hj
| Oplist |
- 3 1
| |ddname-symbol |
| sdsorg-)vI ,DSNAME=name[,DISP={OLD|§§3§] |
I vs I
| |PCSouUT |
L 4
ddname
specifies the symbolic data definition name associated with this
data set definition. It provides the link between the data control
block in the program and the data set definition. It must contain
one to eight alphameric characters, the first of which must be
alphabetic. The user is not allowed to use a ddname that begins
with SYS, since system reserved ddnames are prefixed with those
characters.
PCSOUT
specifies that the program checkout subsystem is being used and a
data set is being defined for dumps. A PCSOUT type of DDEF command
Or macro instruction is required in a task if the DUMP command is
to be employed.
dsorg

specifies the organization of the data set.

VI
specifies the data set organization as virtual index sequential.

vsS
specifies the data set organization as virtual sequential.

Note: TIf neither VI nor Vs is specified, the data set organization
assigned at system generation time is assumed.

Part II: Functional Macro Instruction Grouping 23



DSNAME
specifies the name of the data set being defined; i.e., the name
under which the data set may be cataloged or temporarily referred
to.

This operand can be specified as the fully qualified name of: a
partitioned or nonpartitioned data set, a member of partitioned
data set, or a partitioned or nonpartitioned generation of a

generation data group (identified by an absolute generation name or
relative generation number) .

DISP
specifies the status of the data set. If DISP is defaulted in a
DDEF for an existing cataloged public data set, the system will
assume a value of OLD. If DISP is defaulted for any data set which
does not yet exist, the system will assume a default value of NEW.
It should be noted that for existing uncataloged private data sets
the DISP value must be explicitly specified as OLD. If the user
tries to default such a data set, a DISP value of NEW is assumed
and a system error results. The various defaults and options are
summarized below:

NEW - for a new data set.
OLD - for an old data set.
Defaults - OLD - for old cataloged data sets.
NEW - for a new data set or for an old uncataloged
private data set.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: All three of the DDEF operands shown above —-— except
VI —- are required for a cataloged data set. Only the ddname and data
set organization are needed for an uncataloged data set. In either
case, the data set conforms to the current installation standards.

Before the user can employ the DUMP command in his task, he must
issue a PCSOUT type of DDEF macro instruction or command. Such a DDEF
macro instruction or command requires PCSOUT as the first operand, fol-
lowed by the dsname operand. Since the dump data set will be new, the
DISP operand is defaulted.

The DDEF macro instruction or command causes a system entry to be
established for the DDEF information so that allocation routines and
access methods can refer to it. The link between this information and
the problem program's reference to the data set (i.e., the data control
block) is the data definition name, ddname. The entry containing the
DDEF information is maintained until the task is concluded or until,
through the RELEASE macro instruction or command, the data set is
released.

The DDEF macro instruction or command may be used in conversational
and nonconversational tasks.

If the user’'s problem program is being executed in conversational
mode and an undefined ddname is referenced, prompting messages for DDEF
operands are issued to the user regardless of confirmation option.

The user may change the ddname assigned in a previous DDEF macro
instruction or command by using a DDEF macro instruction with a new
ddname. The only operands used in this case are ddname, dsname, and
disposition (OLD). The new ddname is then assigned and the old ddname
eliminated.

24



At completion of execution of the DDEF macro instruction, the low-
order byte of register 15 contains one of the following codes:

Code

(Hexadecimal) Significance
00 No error
0y Data set name undefined
08 Data set name not unique
ocC Attention interruption
10 DSORG inconsistent
20 Space not available
40 ddname not unique
80 Other

I—- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand may be used in the L-form of the macro instruction.

DCB ~-- Construct a Data Control Block (0)

The DCB macro instruction is one of the major sources (see Appendix
F) by which the attributes of a data set may be described to the system.
The attributes of a data set which can be provided via this macro
instruction and the formats in which particular attributes can be speci-
fied are indicated below by access method.

Format: The format of the DCB macro instruction varies depending on the
data set organization and the access method which is to be used, or was
previously used, to perform I/O on that data set. All of the possible
parameters which might be specified by a nonprivileged user in a DCB
macro instruction are indicated by applicable access method.

Part II: Functional Macro Instruction Grouping 25



_l|ll1|m~|lql|JI||J||ll1-|I-l|l-||l<I|l.II|.I1|||I1-||-III_|:|I.J|||I-I|I|JI|l-||J.I'I-Ill1u.|ll~l|l1l|l-l|ll-lll—lll11||—l||l1|l_ \ m
= P
[T I I < SR I T B T A b 1o
n | O [STRL]
T o] +
(o] _I||I|||la||_l|1l|ll.|l.l'l||l|.|l||l|||]T||II|IT|||1. ||||| o e e v e o he e e s e llllllll_.nlll‘lT'IlllL o 0
S = ]
P S8
O |0 | X [ X I X b EO T B B I T T ST - I B T B T < EE
= | o O
l-|1lIlllllllllT||l|ll|ll|-l1l|l|||ln|l||ll|.|1T| llllllllllllllllll e e e e e i e i e e e e e e e e ] 20
n |
0| fo i)
w % IR B I R VI I I A R R A A A e LS I I w m
Q TI!.IIITIIIIIlll!illlllllTlll'l.l llllllll b cam e e e e o] l.'lllllT'LlllLTI|LlIIJlI1l|L|.|1I|Il-|.lll|lllll [\ ]
< M - 3
* * * . * Q
R R R R R R R Rl (o3
— =4 n g
2 b o e v e e s S— b e e e e s e o s e ] 1||T.I|II.I|I||IIIIllllllllll.lll1!||lllLI.l.lT'Lllll.lllll'llllll.lnl 0 -
o} M o~
(&) .
S I T ISR A R I R T T T Bl B Q0
= |- g <
Q> G 4+
[oh} ||IIT|II.||LIII.IT|.II|1.I|IT|I.l.||l.l|lll|1l||I|I|1I|Il||II|LI|..| llllllllllll Yll.lllJT|Ll|1T|..ll|lll|ll =]
< = + 2]
<< ] g v
w > LT - - I 7} o
> o o
1|||L.IIL.lIIII||JIIIlI.||II|LI|I.llILI'II'II'[T'JI‘lT‘LIII!I||1||l. lllllllllll e e e s i o e e s it e e e e wf (TS + >
P s RS
@ O =
—_ T P &
—_— ) [o7] 2] U4
i Pl Bl By o - — ] — —_ T >N U=
o} (o B I " o & ] - 1 —_ | - [(VR7] T Q
Q| e | % Q O e | o= U || ™ Wlem | @1 = Ol | X el Rl Ol & Q
3] [} 1% o 1Q R Q] et @ o V| =19 v | Q V|| 2 [oTI B e KT =] ] o u ] m,_
>N1D | 0 &= g ] » v | Q x| 0 (] nig o | [} & ol [0 Be] v oO|lmiT |HSLS +
0 e} o1 R ERARE v | T © [ ol1Q 1T ia o} I o ™o Q 2] O | © Q| LP T 0
i &) 0 o 2] 2] 2] 2] Q il 2} 0 © o] 1] O ] 4] O 2] %] 1] 4] Q Il © O | T
0 3] Il Il Il I} It Q18 o218 Il Il 19} 1 i N Il 1% i Q Il 1l o | X ] ] P> 7]
e} s 1=14a1814 © o] F 2] [ I = R T 1| MK IHA | [ 1O | I S s MO L 0d
=] <1 R 1TO I <€« il Il H Il D iIMIOIigi|OIX|®W Il Z 1314 W“ O & [ 0n-A .S
© Zi{ioloikgiA|I& I/ W Sz iBE B Al OINIiBE iR [dlG kI By | O Q Tl
] FRE R AR AR R Hid|lxg|®IOIlH m HiAaISIXIODIDIMIDIDIDIM®E Q o0
4] Al g |lAIRin|lAa|dlAlx| A B IA = 1w BlOlH K| |mAlm@[A@iA{MIA cE <49
[oN ~ - - » ~ - ~ - ~ ~ - - - - - - - ~ - - - » - - ~ - ~ =] 4 m .
1|-||L.||IL_l||Lr||ll|lr|l_l||Lf'LTllfllf‘lfllLr.lllf‘lfl [ S S ORI N S S wa— e Pt Rt L B eI ] EnaQ
=] G 7]
e} )] n o
i [ TR] nom
+ QA QPP
© Ko} 0 1]
M m v Quwo
[} [os] =] T o
jor) Q B Rl
@) a g ~WHdd
e._J-  —_—_—m—_m-———————--—,—-—-—-—m—mm—m—m—E—E—E—mE—mE—mE—m—-——-E—— T T T T T T T T T = M > P |
— (LIRS R-]
- 0o ~Q 0
o] H Qe
Q > By
m .m4 It M
© 2] . &
Z - * - Q2
A4 __ 1l —_——— e e e T e e - a

26



attributes of the data set defined by the DCB macro instruction
with those specified by the DDEF macro instruction (or command),
thereby providing the system with all the attributes necessary for
processing the data set.

Specified as: A symbolic name of one to eight alphameric charac-~
ters, the first of which must be alphabetic. The name specified
for this parameter must be identical to the DDNAME parameter of the
DDEF macro instruction that defines this data set. The only
alternate source for this information is the user's program.

DSORG (all access methods)
specifies the organization of the data set.

Specified as: The various data set organizations. The codes by
which they can be specified, and the access methods with which they
are applicable are indicated below.

Applicable
Code Organization Access Methods
] -— a physical sequential organization BSAM,QSAM
PSU -- a physical sequential unmovable BSAM, QSAM
organization in which the data set
contains location-dependent informa-
tion with respect to this data set.
Treated as PS by TSS/360.
VS —-- virtual sequential organization VSAM
VI —-— virtual indexed sequential VISaM
organization
ve -=- virtual partitioned organization VPAM
VIP -- virtual partitioned index sequential VPAM
member of a partitioned organization
VSP =-- virtual partitioned sequential member VPAM
of a partitioned organization
RX —— 1/0 request facility is being used IOREQ

For an existing VP data set, only VP need be specified. The
organization of the member (virtual sequential or virtual index
sequential) is determined by FIND and placed in the DCB. However,
when creating a new member, the user must specify either VIP or
VSP.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) , but must be supplied before
issuing an OPEN macro instruction.

RECFM (all access methods)
specifies the format of the records in the data set.

Specified as:
For BSAM and_ QSAM:

U[T] [A[M)
VIB|T] [A|M]
F [B|S|T|BS|BT|BST|ST] [A|M

Part II: Functional Macro Instruction Grouping 27



Where the record format is:

U -- undefined-format records
Vv -- variable-length records
¥ -- fixed-length records

Where the physical attributes are:

B —- blocked records
S -- standard data set; no truncated blocks or unfilled tracks
T -- track overflow employed

Where the record contains:

A -- USASI control character
M -- machine code control character

Refer to Appendix D for a discussion of control characters.

Absence of any of the physical attribute mnemonics implies the
opposite of that attribute. For instance, writing RECFM=V
implies: variable-length, unblocked records, no control charact-
er, and no track overflow feature.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

For VAM data sets: All VAM data sets can be organized as fixed
or variable length records but only VSAM and VPAM records can
be specified as having undefined formats.

Uu@laiM (applicable to VSAM, VPAM only)
viiam (applicable to VSAM, VISAM, or VPAM)
FA|M (applicable to VSAM, VISAM, or VPAM)

Where the record format is:

U -- undefined-format records
V -- variable-length records
F -- fixed-length records

Where the record contains:

A —- USASI control character
M -- machine code control character

If A or M is not specified, no control character is assumed.
Refer to Appendix D for a discussion of control characters.

For IOREQ
U -- undefined-format records

This information can also be supplied by the user's program,
the DDEF macro instruction (or command) , or the data set label.

LRECL (VAM, BSAM, and QSAM)

28

specifies the length in bytes of a logical record. For format-F
records, this operand specifies the length of each record in the
data set. For format-v and -U records, the user must insert the
maximum expected value before the data set is opened. The maximum
size is 32,766 bytes for BSAM, 1,048,576 bytes for VSAM, and 4000
bytes for VISAM. When reading format-U or ~V records, the corres-
ponding field in the data control block (DCBLRE) contains the
length in bytes of the record just read.



This information can also be supplied by the user's pProgram, the
DDEF macro instruction (or command) , or the data set label.

EODAD (VAM, BSAM, and QSAM)

specifies the address of the user's end-of-data routine for input
data sets. This routine is entered if the user requests a record
when there are no more records in the data set. If no routine has
been provided, and the end-of-data condition has been encountered,
the task is abnormally terminated. (Refer to Appendix C.)

If the symbol supplied is an external symbol, it must also appear
as the operand of an assembler language EXTRN statement in the same
brogram module as the DCB macro instruction.

The only alternate source for this information is the user's
program.

SYNAD (VISAM, VISAM members, BSAM, QSAM, or IOREQ)

specifies the address of the user's synchronous error exit routine.
The routine is entered if input/output errors result from an
attempt to process data records. If no routine is specified and
the system encounters a condition that would cause control to be
given to the SYNAD routine, the task is abnormally terminated.

The only alternate source for this information is the user's
program.

If the address specified is an external symbol, the symbol must
also appear as the operand of an assembler language EXTRN statement
in the same brogram module as the DCB macro instruction.

PAD (VISAM or VISAM members)

specifies the percentage of space (to a limit of 50 percent) to be
left available within the pages of a virtual index sequential data
set, thus providing for insertions within the pages.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label.

RKP (VISAM or VISAM members)

DEVD

specifies the displacement (relative key position) of the key field
from the first byte of a logical record.

Note: For format-v records, the logical record includes the length
field as the first four bytes.

This information can also be supplied by the user's Program or the
DDEF macro instruction (oxr command) .

(BSAM, 0SAM, IOREQ, or VAM)

specifies the device on which the data set resides. Additional
keyword operands are available, as shown below, to provide device-
dependent information to device-dependent parameter bytes in the
data control block.

Note: For VAM, DA is assumed, and the user can supply the KEYLEN
operand if desired.

DA [,KEYLEN=absexp]
TA [,DEN={0]1]|2}] [, TRTCH= {C|E|T|ET} ]
PR [,PRTSP=(0]1]2|3}]
RD

[[MODE= {C|E}] [,STACK= {1]2}]
PC

Part II: Functional Macro Instruction Grouping 29



Note: Since nonprivileged users cannot address unit record devices
directly, they may not specify PR (printer) , RD (card reader), oOr

PC (card punch) . These devices may be specified only by users with
proper system authorization.

This information can also be supplied by the user's program, the
DDEF macro instruction or command, or the data set label.

DA
specifies a direct-access device.
KEYLEN (VISAM or VISAM members, BSAM, Or IOREQ)
specifies length in bytes of the key associated with a
physical record. When a record is read or written, the
number of bytes transmitted is equal to key length plus
record length. Maximum value of the key is 255.
This information can also be supplied by the user's program Or
the DDEF macro instruction or corrmand .
TA
specifies magnetic tape.
DEN (BSAM, QSAM, oY IOREQ)
specifies a value for the tape recording density in bits per
inch as listed below.
r H . . R : 1
| | Tape Recording Density (bltS/lnCh)J
| t |
|DEN Value | Model 2400 Tape Drive |
| b T 1
| | 7-Track | 9-Track|
[ 1 i 1
v T i 1
| 0 | 200 | -—= |
| 1 | 556 | - |
| 2 | 800 | 800 |
L L 1 J
This information can also be supplied by the user's program
or the DDEF macro instruction (or command) «
TRTCH (BSAM, QSAM, IOREQ)
specifies, for 7-track tape, recording technique, where:
¢ -- Data conversion feature available. If data conv-
ersion is not available, only format-F and format-
U are supported.
E -- Even parity is used.
T -- BCD to EBCDIC translation is required.
This information can also be supplied by the user's
program or the DDEF macro instruction (or command) . If
not supplied by any source, odd parity and no transla-
tion is assumed.
PR

specifies printer.
PRTSP (BSAM, QSAM, or IOREQ)

specifies the line spacing on a printer. Either o, 1,
2, or 3 may be specified.



No spacing

Space one line
Space two lines
Space three lines

wNl=o
o n

This information can also be supplied by the user's
program or the DDEF macro instruction or command. If
not supplied by any source, 1 is assumed.

RD
specifies card reader.

PC
specifies card punch.

MODE (BSAM, QSAM, or IOREQ)

specifies the mode of operation for a card reader or a
card punch, as follows:

C - the card image (column binary) mode
E - The EBCDIC code

This information can also be supplied by the user's
program or the DDEF macro instruction (or command) .

MACRF (BSAM and QSAM only)

specifies the type of macro instructions to be used in processing a
particular data set.

Specified as:
For BSAM:
(RICIP)) | W[CIP) | RI[CIP},WIC|P])

R -- READ macro instructions
W —— WRITE macro instructions

Optional modifiers:

C —— CNTRL macro instruction
P -- POINT macro instruction
For QOSAM:

(G[siciscr) | (p(sicisc) | (GIs1,PI[S])

G —- GET macro instructions
P —-- PUT macro instructions

Optional modifiers:

S —- SETL macro instruction
C ——- CNTRL macro instruction

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BLKSIZE (BSAM only)
specifies a decimal value for the maximum block length in bytes.
Maximum value of BLKSIZE is 32,760.

This information can also be supplied by the user's program, the
DDEF macro instruction (or command), or the data set label.

Part II: Functional Macro Instruction Grouping 31



OPTCD (BSAM or QSAM)

IMSK

specifies an optional service to be provided. This service con-
sists of performing a write validity check (for direct-access
device only) .

This information can also be supplied by the user's program, the
DDEF macro instruction (or command) , or the data set label. If not
supplied by any source, the service is not performed.

(BSAM or QSAM)

specifies a four-byte hexadecimal number whose bit pattern indi-
cates which system error handling procedures, if any, are to be
invoked.

1f FFFFFFFF is written, the system applies all optional error reco-
very procedures. This is the default condition.

If 00000000 is written, the system is to apply none of its optional
error recovery procedures.

If any other four-byte hexadecimal number is written, the system
applies its error recovery procedures only for those entries, set
to 1 in IMSK, that correspond to error.

The first two bytes correspond to the first two bytes of the chan-
nel status word, and the other two bytes correspond to the first
two sense bytes. Bit positions in each byte for specification of
system error recovery procedures are:

XXXXXXAB XCXXXXXD YEFGHIYY YYYYYYYY

where a 1-bit in a given position indicates that the system is to
handle the associated error condition:

X = System never tests this bit to determine entry to retry
routines

Device-dependent conditions

Unit check

Unit exception

Incorrect length

Om P

EXLST (BSAM or QSAM)

specifies the address of an exit list supplied by the user. See
Appendix A for explanation of the exit list.

This information can also be supplied by the user's program.

NCP (BSAM)

specifies the number of consecutive READ or WRITE macro instruc-
tions issued before a CHECK macro instruction. This number may not
exceed 99.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BUFNO (BSAM)

specifies the number of buffers to be assigned to data control
block. The number, expressed as a binary value, may not exceed
255.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) .

BFALN (BSAM)

32

specifies boundary alignment of buffers. This field is ignored in



Time Sharing System/360. Every buffer is automatically aligned on
a doubleword bounndary.

This information can also be supplied by the user's program or the
DDEF macro instruction or command.

BUFL (BSAM)
specifies a decimal number which is the length in bytes of each
buffer to be obtained for a buffer pool. Maximum value is 32,760.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) . If not supplied by any
source, the length is considered equal to the BLKSIZE operand.

BUFCB (BSAM)
specifies the address of a buffer control block.

This information can also be supplied by the user's program.

BFTEK (BSAM)
specifies that simple buffering is to be employed.

S - simple buffering

In simple buffering, a data set is associated with a specific group
of buffers. A data set always uses buffers obtained from the pool
assigned to its data control block at the time it is opened. Reco-
rds can be moved between a buffer and an independent work area,
processed within a buffer, or moved from an input buffer to an out-
put buffer.

This information can also be supplied by the user's program or the
DDEF macro instruction (or command) . If not supplied by any
source, BFTEK=S is assumed.

EROPT (QSAM)
When using GET/PUT macro instructions to process a sequential data
set, an I/0 error may occur. The user may specify one of three
automatic error options to be used if there is no SYNAD routine or
if the SYNAD routine returns control to the user's program. One of
the following choices of action can be specified:

ACC -—- accept the erroneous block and continue processing
SKP -- skip the erroneous block and process the next record
ABE -- abnormally terminate the task

Note: If the EROPT and SYNAD fields are not completed, the ABE
option is assumed.

The choice of action that can be specified depends on which proces-
sing method (option) is specified in the OPEN macro instruction for
the data set. The allowable combinations are as follows:

Action Operand OPEN Option
ACC INPUT,OUTPUT (for printer only), RDBACK, or UPDAT
SKP INPUT,RDBACK, or UPDAT
ABE INPUT, OUTPUT,RDBACK, or UPDAT

PROGRAMMING NOTES: During the assembly of a source program, the DCB
macro instruction reserves storage space in a user program in which the
attributes of a data set being described to the system may be subse-
quently placed. This storage area is known as a Data Control Block

(DCB) and is created at assembly time, in line, wherever the DCB macro
instruction appears in a user's source program. The reserved control
block has a fixed length and consists of two contiguous parts: a common

Part II: Functional Macro Instruction Grouping 33



portion, in which all information that is access method independent is
to be placed, and an access method dependent portion.

In addition to furnishing the storage area for holding the attribute
data describing a data set, the DCB macro instruction can also be used
optionally, at execution time, to actually specify many of a data sets
attributes. A user might furnish the system with such data attribute
information as, the data set organization, its record format, whether or
not buffering is to be used during I/0 operations, the type of device
the data set resides on, and the addresses of user written routines for
handling I/0 errors, processing labels, end-of-data-set processing, and
Data Control Block modification routines. Any such attributes, speci-
fied with a DCB macro instruction are automatically placed in appropri-
ate positions in the reserved storage area.

When the storage area reserved by the DCB macro instruction is filled
with the attributes of a data set, it becomes the principal control
block used to supply the system with information describing a particular
data set or device. Once optionally specified attributes have been
placed in the control block, the DCB routine returns to the user's pro-
gram. All data management macro instructions, provided with TSS/360,
reference this control block for pertinent data when they are executed.

CDD -- Retrieve and Execute DDEF Commands (S)

The CDD macro instruction retrieves one or more DDEF commands from a
line data set containing prestored DDEF commands. The macro instruction
processes the retrieved commands as if they had just been entered by the
user. The user can thus create a line data set of commonly used DDEF
commands with reference through the CDD macro instruction to eliminate
direct DDEF macro instruction or command entries for each run of a
program.

r T T 1
| Name | Operation|Operand |
; = 1 1
I | | text '
| [symbol] | CDD |oplist- |
| | | addr [
L 1 L 4
oplist
specifies the list of operands. They are:

r - 1
| Oplist |
|

b 1
| dsname-name [,DDNAME=ddname-symbol, ...] |
L 4

dsname
specifies the name of the line data set containing the prestored
DDEF commands.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, or a nonpartitioned generation of a
generation data group (identified by absolute generation name or
relative generation number).

DDNAME

specifies the following symbol as ddname of a particular DDEF com-
mand in the data set.

34



ddname
specifies the ddname of a particular DDEF command in the data set.

CAUTION: The user must make sure that none of the DDEF commands or
macro instructions for his task has the same ddname as a DDEF command
retrieved through this macro instruction.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: If no ddnames are given, all DDEF commands in the
set are retrieved and executed.

At completion of execution of the CDD macro instruction, the low-
order byte of register 15 contains one of the following codes:

Code
(Hexadecimal) Significance
00 Normal
oy Invalid dsname
08 Invalid ddname
oC ddname not in data set
10 Error return from DDEF
14 Not a line data set

IL- AND E-FORM USE: The oplist operand is required in the I-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

DCBD -- Provide Symbolic Names for a Data Control Block (0)

The DCBD macro instruction generates a dummy control section (DSECT)
that provides symbolic names for the fields in a data control block.
With proper initialization of a base register, the user may access all
fields of a data control block.

The following conventions have been adopted:

1. The name of the dummy control section is CHADCB. (An EQU is
included in the DSECT to allow use of the alternative 0S/360 name
IHADCB) .

2. The name of each field begins with the characters "DCB" followed by
the keyword operand that represents the field in the DCB macro
instruction. If the resulting name is longer than six characters,
it is truncated to six characters by right-to-left dropout; that
is, the field represented by the operand BLKSIZE= should be written
DCBBLK. (Refer to Appendix F.)

The attributes of each data control block field are defined in the
dummy control section (DSECT) . Data control block fields containing
addresses are aligned on fullword boundaries.

T T
Name | Operation]Operand
4 [

L}
| DCBD
L

Lo C——

[ o e e ey

T
|
L

Part II: Functional Macro Instruction Grouping 35



CAUTION: The DCBD macro instruction may be used only once in an assemb-
1y module.

PROGRAMMING NOTES: The macro instruction may appear at any point in a
control section. However, if it is written at any location other than
at the end of a control section, the original control section must be
resumed by the user. The data control blocks to be accessed need not
appear in the same control section as the DCBD macro instruction.

EXAMPLE: This example illustrates how a program can access a field in a
data control block through use of the DCBD macro instruction. The load
address (LA) instruction is used to place the address of the data con-
trol block in register 5.

A USING statement establishes a base register for CHADCB. The store
operation (ST) places the value contained in register 6 into the speci-
fied field of the data control block pointed to by register 5. DCBLRE
is the field associated with logical record length. The user previously
loaded register 6 with the value he desired to be in DCBIRE.

MYDCB DCB DDNAME=MYDCB,MACRF=G (other DCB operands)
1A 5,MYDCB
USING CHADCB, 5
ST 6,DCBLRE
DCBD

FINDDS* — Locate JFCB Corresponding to Data Set Name (S)

The FINDDS macro instruction obtains the location of the JFCB corres-—
ponding to a given data set name. If the data set name specified is not
in the task definition table (TDT), but is in the catalog, the user can
request that a JFCB be created.

FINDJFCB* - Locate JFCB and Ensure Volume Mounting (S)

The FINDJFCB macro instruction locates the JFCB for a given data
definition name and, optionally, ensures that the volumes specified in
that JFCB are mounted.

*Although these macro instructions are available to all users, they are
employed primarily by system programmers; therefore, refer to System
Programmer's Guide for a discussion of these macro instructions.

36



CONNECTING A DATA SET TO THE SYSTEM

Before processing a data set, a user must first describe its attri-
butes and then connect it to the system. User issuance of the OPEN
macro instruction causes the system to interrogate the data set attri-
bute information specified by the DDEF and DCB macro instructions or any
other available sources for such attributes. The system determines if
an appropriate data set organization has been specified and if all of
the necessary attributes for processing such a data set have been pro-
vided. If the user has indicated he wants to alter the DCB contents at
open time, by including the EXLST parameter (for BSAM and QSAM only)
with his attribute specifications, the system immediately exits to the
user modification routine. Once all the required attributes have been
provided, the sygiem makes the access method that a user has indicated
he desires to employ (via attribute specifications) available to him.

At the time a user opens a data set he can optionally select or default
a processing option which indicates to the system the type of processing
he expects to perform on that data set.

The user should know that the processing option he specifies when he
issues the OPEN macro instruction determines whether he can use all of
the macro facilities of an access method or only a portion of them
(i.e., if a user opens a data set for INPUT only, he will only be
allowed to use macro instructions which retrieve data and will not be
allowed to use macro instructions that store data into the data set he
has opened) .

Once the system knows the processing option and locates the device on
which a data set is to reside, or currently resides, it proceeds to
physically open that data set by processing labels (if specified) and
physically positioning the user at the data record he wants to process.
The initial positioning directed by the system varies depending on the
access method, the processing option, device type, and in some cases the
status (i.e., MOD) of the data set. These relationships are described
in detail in IBM System/360 Time Sharing System: Assembler Programmer's
Guide, Form C28-2032. The functions of the OPEN macro are briefly sum-
marized below.

OPEN collects the attribute data, describing one or more data sets,
from the various sources for providing such attributes (such as
the DCB and DDEF macro instructions), by priority, and places
them in the related data control blocks. These attributes are
made available to the system, thereby logically connecting the
data set (s) to the system. The access method dependent portion
of the data set's data control block is initialized with pointers
to the appropriate access method routines. Labels (if any exist)
are checked, the user's privilege class is verified, and the sys-
tem positions the user at the beginning of the data set that is
to be processed. The user can proceed to process an opened data
set.

A detailed explanation of the above macro instruction and the various
formats in which it may be specified (depending on access method) is
shown below. Further information pertaining to opening a data set and
the priority of attribute sources may be found in Appendix F of this
publication and in IBM System/360 Time Sharing System: Assembler Pro-
grammer's Guide, Form C28-2032.

Opening a Data Set 37



OPEN -- Connect a Data Set to the System (S)

The OPEN macro instruction connects one or more data sets to the sys-
tem by completing the data control blocks containing their attributes,
indicates the manner in which a data set is to be processed, and ini-
tially positions the data set for processing. Input labels are analyzed
and output labels are created. Control is given to exit routines as
specified in the data control blocks exit 1list (BSAM and QSAM only) .

Any number of data sets and their associated options may be specified in
the OPEN macro instruction.

The standard form of the OPEN macro instruction is written as
follows:

r T T A

| Name | Operation|Operand |

[ (| }

r T 1 "

| [symbol] |OPEN | ({dcb-addr, {(opt,-code [,opt,-code])l},...) |

L L L J

dcb
specifies the address of the data control block containing the
attributes of the data set that is to be initialized.

opt,
specifies the intended method of input/output processing of the
data set being connected to the system. The processing method
which can be specified is dependent on the data set organization
and access method which is being used to perform the I/0 proces-
sing. The various processing options, their meanings, and the
access methods with which they can be specified are indicated
below:
} T T T T 1
| Code |Meaning | VAM| BSAM | OSAM| IOREQ |
t t 1 1 + 1
l [ _ I I R |
|INPUT | Data set can be used as input only. | X | X | X | x |
| | This option is assumed if opt, is | | | | ]
| | defaulted. | | | | |
F : T e N S
|OUTPUT | Data set can be used for output only| X | X | X | X |
L 4 il [ 4 } 4
L v L} ] T T 1
|INOUT | Both input and output operations are| X | X | --| x |
| | allowed. The DCB is opened as | | | | |
| | INPUT. o | | |
F = e S W
|OUTIN | Both output and input operations are| X | X | --| x |
| | allowed. The DCB is opened as | | | | |
| | OUTPUT. o I | |
L i 4 i (] [ 1
L} 1 T ] T v
|UPDAT | | X | X} x| X |
k + H———1 + 1 1
|RDBACK | An INPUT data set is to be read | —1 X | X | -
| | backwards. | | | | |
L 1 L L 1 1 1

Note: Opening a VISAM data set for INOUT or OUTIN is equivalent to
opening for UPDAT. When a data set is opened for UPDAT, however,
the user must position to the desired record in the data set.

opt
the codes REREAD and LEAVE are accepted for compatibility with the

38



IBM System/360 Operating System. However, this parameter is
ignored by TSS/360 because volumes are not mounted in parallel.

CAUTION: The following errors cause the results indicated:

T 2]
Error | Result |

1
1 1
Opening a data control block that is already open |No action |
| | |
|Specifying the address of an invalid data control |Task terminated. |
| block | |
| | |
[Opening a data control block when a DDNAME in [Nonconversational |
|data control block has not been provided. |task terminated; |
| |prompting given if |
| |task is conversa- |
| |tional |
| |
|Opening a privileged data set by a nonprivileged | Task terminated |
|user (BSAM, QSAM, VPAM and IOREQ only) . | |
| | |
|Opening a READ-ONLY data set and specifying an |Task terminated |
option other than INPUT | |
| |
Opening a data control block when the DDNAME in |Nonconversational |
the data control block does not correspond to the |task terminated; |
DDNAME in the DDEF macro instruction (or command) |prompting given if |
| |task is conversa- |
|tional |
|
Opening a data control block containing an invalid|Task terminated |
DSORG specification | |
L L 4

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Any number of data control block addresses and asso-
ciated options may be specified in the OPEN macro instruction. This
facility allows parallel opening of the data control blocks and their
associated data sets, which is more efficient than to open them indivi-
dually. One of the services performed at this time is processing of
labels of data sets or volumes.

VSAM:

When a shared VSAM data set is opened, a data set interlock is set
according to the opt, specification. If INPUT is specified, a read
interlock is set; if OUTPUT, INOUT, OUTIN, or UPDAT is specified, a
write interlock. Rules for sharing VSAM data sets are given in
Appendix K.

VISAM:

When a shared VISAM data set is opened, a data set interlock is set
according to the opt, specification. If INPUT, INOUT, OUTIN, or
UPDAT is specified, a read interlock is set; if OUTPUT is speci-
fied, a write interlock is set. Rules for sharing VISAM data sets
are given in Appendix K.

BSAM:

If a DCB exit routine or a user-label exit routine is to be
executed, the exit list address must be provided in the data con-
trol block. The format of the exit list, its use during the open-

Opening a Data Set 39



ing process, and exit routine requirements are discussed in Appen-
dix A.

I- AND E-FORM USE: The L- and E-form of this macro instruction are
allowed. The E-form of the macro instruction may specify any parame-
ters; however, the parameters specified in the E-form will overlay para-
meters specified in the L-form. The E-form may not specify more DCB
operands than are specified in the L-form. The format of the parameter
list generated by the OPEN macro instruction is described in Appendix L.

For example:

JOE OPEN (DATSET, ,MORSET, ,) ,MF=L
DEB OPEN (, ,FOSET, ,NUSEM) ,MF= (E,JOE)

When the E-form macro instruction is executed, the data control block
FOSET replaces MORSET in the parameter list. Data control blocks with
symbolic addresses DATASET, FOSET, and NUSEM are opened.

EXAMPLES: EX1 opens the data control block INVEN as an input data set.
EX2 opens the two data control blocks INVEN and REPORT with different
options. EX3 opens the two data control blocks INVEN and MASTER; they
are opened for input data sets since INPUT is assumed when opt, is
omitted. EX# generates a parameter list for opening INVEN, and EX5
opens INVEN.

EX1 OPEN (INVEN, (INPUT))

EX2 OPEN (INVEN, (INPUT) ,REPORT, (OUTPUT,LEAVE))
EX3 OPEN (INVEN, , MASTER)

EXY4 OPEN (INVEN, (INPUT)) ,MF=L

EX5 OPEN MF= (E, EXY)

40



ACCESSING A DATA SET

Once a data set has been given a name, its attributes have been
described, and it has been connected to the system, the user can employ
the routines provided by the TSS/360 data set management facilities for
storing and retrieving data organized in the various formats. These
routines are employed by using I/0 macro instructions in the user's
source program. The macro instructions used comprise part of an access
method and are dependent on the manner in which a user organizes and
desires to process his data. There are two primary types of access
methods, the Virtual Access Methods (VAM) and the Sequential Access
Methods (SAM) as indicated below.

VAM: These are the access methods used in TSS/360 unless the data sets
nmust be interchanged with programs running in Operating System/
360 or the Model U4 Programming System, or the data set is to be
written on magnetic tape.

Users create, read, and process Virtual Access Method (VAM) data
sets on the basis of logical records. The system, however,
blocks these records by pages (4096 bytes) and uses the page as
the unit of transfer between the direct access device and the
user's virtual storage. The system also ensures that only those
pages of a data set that are actually required are resident in
virtual storage. Because VAM data sets can be organized either
sequentially, indexed sequentially, or partitioned, three dis-
tinct access methods are provided under VAM for processing these
data sets. The virtual access methods that are provided to a
user are:

Data Set Organization Access Method

sequential Virtual Sequential Access Methos (VSAM)

indexed sequential Virtual Indexed Sequential Access Method
(VISAM)

partitioned Virtual Partitioned Access Method (VPAM)

SAM: Used to read and write records that can be read and written with
programs running under control of the Operating System/360 or the
Model U4 Programming System, or when the data set is to be writ-
ten on magnetic tape.

Users create, read, and process SAM data sets on the basis of
physical records. The records within a physical record can,
however, be blocked or unblocked. Because of this, two distinct
access methods are provided under SAM for processing data sets.
The Sequential Access Methods are indicated below.

Data Set Organization Access Method
unblocked sequential Basic Sequential Access Method (BSAM)
blocked sequential Queued Sequential Access Method (QSAM)

Another special accessing facility, the Input/Output Request Facility
(IOREQ) is provided for users who would rather program their own I/0
device control routines than employ any of the access methods provided
with the TSS/360 Data Management Facilities.

Each of the above access methods and the macro instructions which may
be used with them are explained more fully on the following pages.
Detailed information pertaining to access methods and data set organiza-
tion may be found in IBM System/360 Time Sharing System: Assembler Pro-
grammer's Guide, Form C28-2032.

Access Methods 41



VIRTUAL SEQUENTIAL ACCESS METHOD

The virtual sequential access method (VSBRM) consists of the TSS/360
data management facilities that enable a user to process virtual sequen-—
tial data sets. These data sets can be stored on, or retrieved from,
direct-access devices only. The record format within each such data set
can be fixed length (blocked or unblocked), variable length (blocked or
unblocked) , or undefined length (unblocked only) . Such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by VSAM. The macro instructions that have been
provided to a user, by VSAM, for accessing a data set in the appropriate
manner, are summarized below.

GET used for reading logical records in a sequential order.

PUT for writing new or altered logical records into a virtual sequen-
tial output data set.

PUTX for writing an updated or identical logical record, directly from
an input data set to an output data set, without altering the
length of the record. The next sequential logical record con-
tained in an input buffer area (where it may have been modified)
is transferred to the output buffer as the next sequential output
record. The system must be positioned at that next sequential
logical record by issuing a locate mode GET macro instruction
prior to issuing PUTX.

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Record (R)

The GET macro instruction (for VSAM) can be specified in either loc-
ate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record of an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record of an input data set and moves it to
a specified area in virtual storage.

LI T h
| Name |Operationi0perand |
1 L 4

r t 1 1
| (symbol) |GET | dcb- Jaddrx| |,area- Jaddrx |
] | | () (0 |
L L L N}
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

42



area (for move mode only)
specifies the address of the user's work area into which the record
is moved. If (0) is written, the address must be loaded into para-
meter register 0 before execution of this macro instruction.

CAUTION: If a GET macro instruction is requested beyond the end of a
data set, as a result of sequential operation or following a SETL macro
instruction, the user EODAD is given control. (Refer to Appendix C.)

The address of a save area must be placed in register 13 before
execution of this macro instruction. .

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

For undefined-format records, the user must set the DCBLRE field to
the length of the record to be retrieved before issuing GET.

Rules for sharing VSAM data sets are given in Appendix K.

PUT -- Include a record in an Output Data Set (R)

The PUT macro instruction (for VSAM) can be specified in either loc-
ate mode or move mode. In locate mode, the PUT macro instruction places
in register 1 the address of an output buffer. The user should subse-
quently construct at that address the next record to be incorporated in
an output data set. In move mode, the PUT macro instruction moves a
record from a user-specified area in virtual storage into an output
buffer so that the system may include the record in the output data set.

[ ) L 1 3
| Name | OperationjOperand |
L (| 1 J
r [} ] 1
| [symbol] | PUT | dcb- |addrx||,area- | addrx |
| | | m (0) I
] 1 L 4
dcb

specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the logical record to be moved into the
buffer. If (0) is written, the address must have been loaded into
parameter register 0 before execution of this macro instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: It is the user's responsibility to store the length
of each format-U record in the DCBLRE field of the data control block
before issuing the PUT. This length must be a multiple of 4096 bytes.

For format-V records, each record includes four control bytes. The
user must store the length of the record in bytes 1, 2, and 3 of that
four-byte field, before issuing a PUT macro instruction. Byte 0 must
contain binary zero.

Rules for sharing VSAM data sets are given in Appendix K.

-~

Access Methods: VSAM 43



PUTX -- Replace a Sequential Logical Record (R)

The PUTX macro instruction (for VSAM) allows the user to return an
updated logical record to an input data set.

) T T h)
| Name |Operation|Operand |
[ ] }

r ) ] "
| (symbol] | PUTX | dcb- Jaddrx |
I | | M |
L i i 3
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

CAUTION: The address of a save area must be placed in register 13
before execution of this macro instruction.

PROGRAMMING NOTES: The PUTX macro instruction can only replace a reco-
rd that was located by a locate-mode GET macro instruction. The data
control block must be opened for the UPDAT mode while using PUTX. The
user must not change the length of the record during the replacement
process.

Rules for sharing VSAM data sets are given in Appendix K.

SETL -- Specify Start of Sequential Processing (R)

The SETL macro instruction (for VSAM) positions to the beginning,
end, previous record, or any point within a virtual sequential data set.

] T T h
| Name | Operation|Operand |
F t 1 i
| | | R o l
| [symbol] | SETL |dcb- Jaddrx\{,type—/ B\ [,11limit-jaddrx|] |
| | | (M E (0) |
| I | P I
L L i 3
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address of the data
control block must be in register 1 before execution of this macro
instruction. type

specifies the starting point for processing and any optional ser-
vices requested:

R
Record at the retrieval address obtained from DCBLPDA field in the
data control block following a GET or PUT.

B
Beginning of the data set

E

End of the data set

4y



Previous logical record (backspace)

1limit
specifies the address of a word containing the retrieval address.
If the type operand specifies B, P, or E, the 1llimit field is to be
omitted. If (0) is written, the address of a field containing the
retrieval address must be in register 0 before execution of this
macro instruction.

CAUTION: A backspace request is not permitted for format-U records and
causes abnormal termination.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A SETL instruction that positions to an area outside
of the data set causes an error. The error is indicated during a subse-
quent GET or PUT macro instruction by exit to EODAD.

Rules for sharing VSAM data sets are given in Appendix K.

Access Methods: VSAM 45



VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD

The virtual indexed sequential access method (VISAM) consists of the
TSS/360 data management facilities that enable a user to process indexed
sequential data sets. These data sets may be stored on, or retrieved
from, direct access devices only. The record format within each such
data set can be fixed-length (blocked or unblocked) or variable-length
(blocked or unblocked) format. Such attributes are unique for each data
set; they must be defined to the system before a data set can be
accessed by VISAM. The macro instructions that have been provided to a
user by VISAM, for accessing a data set in the appropriate manner, are
indicated below.

GET for reading logical records in sequential order
PUT for writing logical records in a sequential order

READ for reading logical records in a nonsequential or sequential
order

WRITE for writing logical records in a nonsequential or sequential
order

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical recoxrd within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

ESETL (for shared data sets) allows other sharers to access portions of
the data set currently being processed by the user.

RELEX (for shared data sets) allows other sharers to access and/or up-
date portions of the data set currently being processed by the
user.

DELREC deletes a specified logical record from a data set

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to VISAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Record (R)

The GET macro instruction (for VISAM) can be specified in either lo-
cate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential record in an input data set and places its
address in register 1. The user may then operate on the record where it
is, or move it to a work area. In move mode, the GET macro instruction
acquires the next sequential record and moves it from an input buffer to
a user-specified area in virtual storage.

r T T |
| Name | Operation|Operand |
[1 1 i J
r 1 1 1
| [symbol} |GET | dcb-} addr| ,area-)addrx |
| | | §) (0) |
L L L J
dcb

specifies the address of the data control block opened for the

46



dataset being processed. If (1) is written, the address must have
been loaded into parameter register 1 before execution of the macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is to be moved. If (0) is written, the address must have been
loaded into parameter register 0 before execution of the macro
instruction.

CAUTION: Any exceptional condition (i.e., logical record out of
sequence) resulting from the execution of a GET macro instruction causes
control to be passed to the user's synchronous error exit (SYNAD) rou-
tine. 1In this case, the general registers and the exceptional condition
fields in the data control block are set as shown in Appendixes B and F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: When retrieving variable-length records, the GET
macro instruction returns with the length of the logical record in the
DCBLRE field of the data control block.

If a GET is requested beyond the end of a data set, as a result of
sequential operation or SETL macro instruction, the user EODAD exit is
taken. See Appendix C.

A page-level read interlock is imposed on the page referred to by
execution of this macro instruction. The interlock is released by any
macro instruction referring to the same DCB that refers to another page.
Rules for sharing VISAM data sets are given in Appendix K.

PUT -- Include a Record in an Output Data Set (R)

The PUT macro instruction (for VISAM) may be specified in either lo-
cate mode or move mode. In locate mode, the PUT macro instruction
places in register 1 the address of an output buffer. The user should
subsequently construct, at this address, the next record for incorpora-
tion into the output data set. 1In move mode, the PUT macro instruction
moves a record from a specified area in virtual storage to an output
buffer so that the system can include the record in the output data set.

1 T 1
iName | Operation|Operand |
L 1 L 1

L) =
i[symbol]lPUT idcb~ addrx||,area- [addrx |
| | | ) (0 |
L i 4 J
dcb

specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

area (for move mode only)
specifies the address of the record to be moved into the buffer.
If (0) is written, the address must have been loaded into parameter
register 0 before execution of this macro instruction.

CAUTION: Any exceptional condition resulting from the execution of a

PUT macro instruction causes control to be passed to the user's synch-
ronous error exit (SYNAD) routine. In this case, the general registers

Access Methods: VISAM 47



and the exceptional condition fields in the data control block are set
as shown in Appendixes B and F.

The address of a save area must be placed in register 13 before
execution of this macro instructionm.

PROGRAMMING NOTES: For format-V records, each record must begin with a
four-byte length field. The user must place the length of the record
into the low-order three bytes of that four-byte field, before issuing a
PUT macro instruction. The high-order byte must contain binary zero.
The PUT macro instructions may not be used with a shared data set.

Rules for sharing VISAM data sets are given in Appendix K.

READ -- Read a Selected Logical Record (S)

The READ macro instruction (for VISAM) acquires a selected logical
record from an input data set and moves it to a user-specified area.
The user selects the record by providing either the record key or the
retrieval address. The key is in the user's data control block upon
completion of the read operation; when completed, processing of the
user's program continues.

r T ] 1
| Name |Operation|Operand |
F + 1 i
| | I RY I
| [symbol] |READ | decb-symbol,type—({ KZ ), dcb-addr,area-addr,key-addr |
KX
! | | J
decb

specifies the symbol (name) to be assigned to the data event con-
trol block (DECB) constructed as part of the expansion of this
macro instruction.

type
specifies one of the following as the type of READ operation.

KY -~ read according to specified key.
KZ - read according to specified retrieval address.

KX - read according to specified key permitting no other user shar-
ing the data set to gain access to the record until the cur-
rent user has released the record. The record must be
released by the RELEX macro instruction or by a subsequent
WRITE macro instruction referring to the same data control
block.

dcb
specifies the address of the data control block opened for the data
set being processed.

area
specifies the address of the user's work area into which the record
will be placed.

Note: The area must be large enough to contain the largest
expected record.

key
specifies the address of the field containing either the record key
for a READ (type -KY or —-KX) or the retrieval address for a READ

48



(type KZ) . The retrieval address is a four-byte field, beginning
on a word boundary that is in the data control block and may be
accessed using the DCBD macro instruction and the name, DCBLPA.

CAUTION: Exceptional conditions, including "key not found," "key great-
er than last key on data set," and "invalid retrieval address,"™ result-
ing from the execution of a READ macro instruction, cause control to be
passed to the user's synchronous error exit (SYNAD) routine. In this
case, the general registers and the exceptional condition fields in the
data control block are set as shown in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: READ (type KY) imposes a page-level read interlock
on the pages containing the record to be read whereas READ (type KX)
imposes a page-level write interlock and releases a page-level read
interlock. As the record pointed to by the data control block shifts
within the data set, page-level interlocks are released from pages no
longer being used. The retrieval address form of READ (i.e., type KZ)
cannot be used with shared data sets.

Rules for sharing VISAM data sets are given in Appendix K.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E~form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
specified for the MF= operand of the E-form, because it is the DECB sym—
bol which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
IL-form are:

T T T 1
| Operand | L-Form | E-Form ]
I : + 1
: decb : required : decb- sszo%} I
] type | required | required |
| MF | MF=L | MF=E |
L 1 L 4

WRITE -- Write a Selected Record (S)

The WRITE macro instruction (for VISAM) moves a selected record from
a user-specified area to an output buffer. The system then includes the
record in the output data set either by key or retrieval address. This
macro instruction may be used to update a record or add to the data set.
When the write operation is completed, processing of the user's program
continues.

Access Methods: VISAM 49



r T T 1
| Name | Operation|Operand |
; s : 1
| I | KR |
| [symbol] | WRITE | decb-symbol, type—-( KS ,dcb-addr,area-addr,key-addr |
KT
'. ! ! )
decb

specifies the symbol (name) to be assigned to the data event con-
trol block (DECB) constructed as part of the expansion of this
macro instruction.

type
specifies one of the following as the type of WRITE operation:

KR - WRITE replace by retrieval address
for updating
KS - WRITE replace by key

KT - WRITE a record with a new key} for adding a record

dcb
specifies the address of the data control block opened for the data
set being processed.

area
specifies the address of the user's work area from which the record
is to be written.

key

specifies the address of the field containing either the record
key, the length of which is indicated in the data control block; or
a retrieval address, a four-byte field on a fullword boundary, ori-
ginally obtained from DCBLPA.

CAUTION: Exceptional conditions resulting from the execution of a
WRITE macro instruction cause control to be passed to the user's synch-
ronous error exit (SYNAD) routine. In this case, the general registers
and the exceptional condition fields in the data control block are set
as shown in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: WRITE releases any page-level interlocks set for the
data set as a result of executing macro instructions referring to the
same data control block. Rules for sharing VISAM data sets are given in
Appendix K.

I- AND E-FORM USE: The IL-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
written for the MF= operand in the E-form, because it is the DECB symbol
which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified.

If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter

50



replaces the corresponding specified optional, or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E and L-
form are as follows:

r k| Ll 1
| Operand | L-Form | E-Form |
b : + 1
| decb | required | decb- |symbol |
] | | M |
| [ _ [ _ |
| type | required | required |
| | ] |
| MF | MF=L | MF=E i
L L ] 3
SETL -- Specify Start of Sequential Processing (R)
The SETL macro instruction (for VISAM) positions a data set to the
beginning, end, previous record, or any point within the data set.
T T _ T 1
| Name |Operation|Operand i
- : t 1
| [symbol] | SETL |dcb- Jaddrx |, type-code [,11imit- [addrx ] |
| | | m (0) |
L L L J
dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of the macro instruction.
type
specifies positioning within the data set as follows:
r L . . . 1
| Code |Positioning |
L 1 .'
¥ 1
I R |Record at the retrieval address obtained from the DCBLPA |
| |field in the data control block following a GET or PUT |
| ] I
| B IBeginning of the data set |
I I
| E |IEnd of the data set i
| | |
| P |Previous record (backspace) |
| | |
| K |Record whose key is specified in the operand |
| | |
| N |Record immediately following the one pointed to by the |
| |previous SETL; if there was no previous SETL, no reposi- |
| |tioning occurs |
L i 4
1limit

specifies the address of a field containing either the record key,
the length of which is indicated in the data control block, or a
retrieval address (a four-byte field beginning on a fullword boun-
dary originally obtained from DCBLPA) . If (0) is written, the 11i-
mit address must have been loaded into parameter register 0 prior

Access Methods: VISAM 51



to execution of this macro instruction. If the type operand is
specified as B, P, N, or E, the 1linit field is ignored.

CAUTION: Exceptional conditions, including the following three condi-
tions, resulting from the execution of a SETL macro instruction cause
control to be passed to the user's synchronous error exit (SYNAD) rou-
tine. In this case, the general registers and the exceptional condition
fields of the data control block are set as shown in Appendixes B and F.

1. 1Invalid retrieval address or record key.
2. SETL (N) following a SETL (E) -
3. SETL (P) following a SETL (B).

If a SETI macro instruction is requested by key and the request key
is greater than the highest key or lower than the lowest key in the data
set, control is passed to the user's SYNAD routine. SETL by retrieval
address (type R) must not be used with a shared data set.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTE: SETL does not impose any sharing interlocks on a data
set. Rules for sharing VISAM data sets are given in Appendix K.

ESETL -- Release Shared Data Set (R)

The ESETL macro instruction (for VISAM) releases a page-level inter-
lock imposed by another macro instruction (e.g., GET, or READ). This
macro instruction does not release the write interlock caused by a type
KX READ. See RELEX macro instruction in this section.

r T T 1
| Name | Operation|Operand |
L t 1 .'
1 3 1 \

| [symbol]} | ESETL | dcb- jaddrx |
| | | (M |
L 1 1 4
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the data control block
address must have been loaded into parameter register 1 before
execution of this macro instruction.

CAUTION: Exceptional conditions resulting from the execution of a ESETL
macro instruction cause control to be passed to the user's synchronous
error exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes B and F.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in
Appendix

DELREC -- Delete a Record (R)

The DELREC macro instruction (for VISAM) deletes a specified record
from a virtual index sequential data set. The record may be specified
by its key or its retrieval address.

52



T 1 T B
| Name |Operation|Operand {
L 1 1 4{
1 1
| [symbol] | DELREC | dcb- Jaddrx|,type-|K|,11limit- Jaddrx |
| | | ) R (0) ]
L 1 J | 4
dcb
specifies the address of the data control block opened for the
dataset being processed. If (1) is written, the address must be
loaded into parameter register 1 prior to execution of this macro
instruction.
type
specifies whether the record will be deleted by key or retrieval
address as follows:
K
Record key
R
Retrieval address as obtained by the user from DCBLPA in the
data control block.
1limit

specifies the address of a field containing either the record key
or the retrieval address. The retrieval address must be in a four-
byte field, beginning on a doubleword boundary. If (0) is written,
the address must be loaded into parameter register 0 prior to
execution of the macro instruction.

CAUTION: Exceptional conditions, including "invalid retrieval address"”
and "key not found," resulting from the execution of a DELREC macro
instruction cause control to be passed to the user's synchronous error
exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields of the data control block are set as shown
in Appendixes B and F. DELREC by retrieval address may not be used with
a shared data set.

PROGRAMMING NOTE: This macro instruction releases any page-level inter-
locks established by other macro instructions referring to the same DCB.
Rules for sharing VISAM data sets are given in Appendix K.

RELEX -- Release Read Exclusive Record (R)

The RELEX macro instruction (for VISAM) makes a record of a shared
data set available to other users after the record has been read with a
READ exclusive (type KX) macro instruction.

T L
Name | Operaticn|Operand
1 1

| m

r
|
L
r
|
|
L

. S |

T )

[symbol] | RELEX | dcb- Jaddrx
|
i

dcb
specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address of the data
control block must be loaded into parameter register 1 prior to
executing the macro instruction.

Access Methods: VISAM 53



CAUTION: Exceptional conditions resulting from the execution of a RELEX
macro instruction cause control to be passed to the user's synchronous
error exit (SYNAD) routine. In this case, the general registers and the
exceptional condition fields in the data control block are set as shown
in Appendixes B and F.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address
ofa save area must be placed in register 13 before execution of this
macro instruction.

PROGRAMMING NOTE: Rules for sharing VISAM data sets are given in Appen-
dix K.

54



VIRTUAL PARTITIONED ACCESS METHOD

The virtual partitioned access method (VPAM) consists of the TSS/360
data set management facilities that enable a user to access partitioned
data sets. Each partitioned segment (or member) is a complete VSAM or
VISAM data set in itself. The allowable organizations of the records
within members are the same as within VSAM or VISAM respectively. VPAM
may be used only to store or retrieve data set members on direct access
devices.

Once a partitioned data set has been defined and connected to the
system by previous user (or system) issuance of a DCB, DDEF, and OPEN
macro instruction the user may employ the VPAM macro instructions (FIND
and STOW) to locate its members. When the member is opened and located
via a FIND macro instruction, the macro instructions, appropriate to the
particular member's organization (i.e., VSAM or VISAM), can be used to
process the member. It should be noted that although a member is
defined by the same DDEF and DCB macro instructions that defined the
partitioned data set, the member is not opened until a VPAM FIND macro
instruction is executed. The VPAM macro instructions are briefly
described below.

FIND locates an individual member within a VPAM data set and opens the
member for processing. To process the records within the member,
appropriate VISAM and VSAM macro instructions can be employed.

STOW causes a VISAM or VSAM data set, previously defined to the system
as a partitioned data set member, to be incorporated or deleted
from a partitioned data set. It also adds, changes, deletes, or
replaces member names or aliases and allows a user to enter
unique data, describing the member, into an index.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to VPAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

FIND -- Find a Member of a Partitioned Data Set (S)

The FIND macro instruction (for VPAM) searches a partitioned organi-
zation directory to locate a directory entry for a member and optionally
places the user's data associated with the member into the specified
area. The member is opened and positioned for processing.

|} 1 L
iName | Operation|Operand |
5 + + 1
| [symbol] |FIND | dcb-addr,name-addr [, area-addr,length-value] |
L 1 L 3
dcb

specifies the address of the data control block opened for the data
set being processed.

name
specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

area

specifies the location of the eight-character member name, or
alias, that is to be used to locate the member.

Access Methods: VPAM 55



length
specifies the length, in bytes, of the area provided for reading in
the user data.

CAUTION: If area is specified, length must be specified. In addition,
area and length must be specified for shared data sets if user data is
present. If not specified, the task is abnormally terminated.

The FIND macro instruction causes an abnormal termination if any con-
ditions are discovered that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: After execution of the FIND macro instruction, gen-
eral register 0 contains the length of the user data in the POD. Gener-
al register 1 points to the parameter list shown below.

PARAMETER LIST

iG. P. Register 1}——4-{dcb—addr ]Word 0
iname—addr ]Word 1
i*Pointer to user-data area jWord 2
{*Pointer to Length, in bytes, of user ]Word 3
! area buffer J

*These are zero if not supplied in the
macro instruction.

The length, in bytes, of the user area buffer is placed in a word
immediately following word 3 of the parameter list by the macro expan-
sion. However, if the user constructs his own parameter list, the word
containing this length may be placed in some other location.

If the length specified is less than the actual length of the user
data in the POD, both area and length operands are ignored and general
register 15 contains appropriate error code (hexadecimal 10) .

Rules for sharing VPAM data sets are given in Appendix K.

For shared VPAM data sets, the following interlocks are set by a FIND
macro instruction:

1. VISAM members are:
e write interlocked when opened for OUTPUT.
e read interlocked when opened with any other option.
2. VSAM members are:
e read interlocked when opened for INPUT.
e write interlocked when opened with any other option.
After execution of the FIND macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes, indicating the

status of the operation. The user should take appropriate action
depending on the code returned.

56



1] Ll a
| Code | I
| (Hexadecimal) | Definition |
[l 1

v | "
| 00 |Successful completion of FIND |
I | |
| o4 |Member or alias was not located by FIND |
I |
| 08 |[Data control block, indicated in the macro instruction |
| |is in use for creating a member. Execution of a STOW |
| |must be complete before this FIND can be executed |
| I
| 10 |Length specified in the macro instruction is not large |
| |enough to contain user data |
| ! I
| 14 |Member to be located is already open for this data con- |
i |trol block, due to previous FIND |
L L 4

L- AND E-FORM USE: All operands are optional in the L-form of this
macro instruction; register notation may not be used. All operands are
optional in the E-form; register notation may be used. All operands not
supplied in the IL~-form must be supplied in the E-form.

STOW_—-- Manipulate Partitioned Organization Directory (R)

The STOW macro instruction (for VPAM) causes a partitioned data set
member to be incorporated or deleted from a partitioned data set. This
macro instruction is also used to add, change, delete, or replace a
member name or an alias. It also provides for storage of additiomal
information in the partitioned organization directory (POD) in the form
of user data.

r T T 1
| Name | Operation|Operand |
L [l i d
r 13 1 1
| [symbol] | STOW | d&cb- jaddrx|, |area- Jaddrx| | ,type-code |
I | | )] (0) I
[ L L N
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must be loaded
into parameter register 1 before execution of this macro
instruction.

area
specifies the address of an area constructed by the user. The con-
tents of this area depend on the type of STOW requested. (Refer to
"Programming Notes.") If (0) is written, the address must be loaded
into parameter register 0 before execution of this macro instruc-
tion. For type-R STOW, area does not have to be specified, and if
not specified, the original user data will be unchanged.

type
specifies the type of STOW being requested by one of the following
codes:
N Add a new member and close the member.

NA Add one or more new aliases.

Access Methods: VPAM 57



R Replace the user data associated with a member and close the
member.

U Replace the user data associated with a member but do not close
the member.

D Delete a member from the data set; the directory entries for
the member and all of its aliases are deleted and the space
occupied by the member is made available for subsequent use.

DA Delete one or more aliases.
C Change the name of a member.

CA Change the name of an alias.

CAUTION: A member may not be subsequently referred to by the same data
control block after a type-N or -R STOW until a FIND of that member is
again requested since these types of STOW close the member.

STOW abnormally terminates the task if any conditions are discovered
that make continuation impossible.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Only type-R STOW is permitted on a shared data set
opened for input. The format of the area used by the STOW macro
instruction depends on the type of STOW requested. It is the user's
responsibility to construct the area and pass the address of the area to
STOW in the area operand of this macro instruction. The area require-
ments are:

Types N and U: The area must be at least 12 bytes long and begin on a
fullword boundary.

bytes N

Name User Data

= o g e
SR T ——
O R |

Name - Eight-character member name

N - Number of bytes of user data (0=N=510)

User Data - Contains the variable data supplied by the user. The
data are stored in the POD and can be retrieved by
means of the FIND macro instruction.

Types NA and DA: The area must be at least 20 bytes long and begin on a
fullword boundary.

bytes 8 4 8 8 8

Member Name M Alias 1 Alias 2 Alias M

cseccee

r—- —— -
S S
b e
e e e e =
I — e —
e e = o
e —

Member Name - Name of the member to which the aliases are linked
or are to be linked.

58



M - Number of aliases to be added or deleted.
Aliases - The aliases to be added or deleted;
Iype D: The specified area must contain the member name that is to be

deleted. It is eight bytes long. When a member name is deleted, all of
its aliases are also deleted.

L 1
bytes | 8 I
F i
| Member Name |
L. 1
Type C: The name of the member and the name to which it is to be
changed are in this area (16 bytes).
r T K
bytes | 8 | 8 |
F : 1
| Member Name | New Member Name |
L L ¥
e CA: The area specified must be 24-bytes long.
r 1 L] 1
bytes | 8 | 8 | 8 |
b t i {
| Member | 014 Alias | New Alias |
L L 1 d
Member - The eight-character name of the member with which the

old alias is associated.
0ld Alias - The eight-character alias being changed.

New Alias - The eight-character alias being used for the
replacement.

Type R: If any user's data is specified, the length must be four bytes
longer than the length of the data and begin on a fullword boundary.

The additional four bytes are required to specify the length of the spe-
cified data.

bytes 4 N

N User Data

[ S}

T
|
]
T
|
L

e e e

N - Number of bytes of user's data to be placed in the POD
(0<N<510)

User Data - Contains the variable data supplied by the user. The
data is stored in the POD, and can be retrieved by
means of the FIND macro instruction.

The user must have exclusive access to a member in order to issue
type-C or type-D STOW; that is, he must have opened the data set with an
OPEN option that causes the member to be write-interlocked.

Member interlocks are released by CLOSE (referring to the same DCB
that caused the interlock to be set) , type-R STOW, or a subsequent FIND.

Access Methods: VPAM 59



Rules for sharing VPAM data sets are also given in Appendix K.

After execution of the STOW macro instruction, bits 24 through 31 of
general register 15 contain one of the following codes indicating the
status of the operation. The user should examine this code to determine
the course of action.

i code (hex) 1 Definition i
{ﬁ 00 iSuccessful completion of STOW 1
% ou ‘New name or alias is already in use (N, Na, C, or CR) =
‘ 08 {Member pame is not in POD (U, D, DA, or CA) }
{ 10 }Old member name is not in POD (C) ; alias is not in POD =
| | (Dp) ; old alias is not in POD (CA) |
i 14 iInvalid type STOW requested i

60



BASIC SEQUENTIAL ACCESS METHOD

The basic sequential access method (BSAM) consists of the TSS/360
data set management facilities that enable a user to access unblocked
physical sequential data sets. Since BSAM does not provide a user with
blocking/deblocking or buffering routines it should be used primarily to
process unblocked records (QSAM has been provided to facilitate the pro-
cessing of blocked records). A physical sequential data set can be
stored on, or retrieved from, disk, tape, or cards, and can be printed
out by a printer. The record format within each such data set can be
fixed-length (blocked or unblocked), variable-length (blocked or
unblocked) , or undefined-length (unblocked only). Such attributes are
unique for each data set; they must be defined to the system before a
data set can be accessed by BSAM. The macro instructions provided to a
user, by BSAM, for accessing a data set in the appropriate manner, are
indicated below.

READ causes a request for a transfer of a physical record, from an
I/0 device directly to a specific virtual storage input area,
to be recorded in a control block (DECB) and placed on an I/O
request queue. Control is then returned to the user's program;
the request is subsequently executed by the system when the
device is available. If this physical record contains several
logical records, the user must create his own deblocking rou-
tines to access the individual logical records. In such a
case, the GETPOOL and GETBUF macro instructions are very
useful.

WRITE causes a request for a transfer of a physical sequential rec-
ord, from a specific storage area to an I/O device (directly,
without using a buffer area), to be recorded in a control block
(DECB) and placed on an I/0O request queue. Control is then
returned to the user's program and the request is subsequently
executed by the system when the device is available. If a
physical record is to contain several logical records, the pro-
grammer must write his own blocking routines to include the
logical records in the storage area being transferred.

CHECK checks the queue of control blocks (DECBs) containing the
requests for read or write operations to determine if those
requests have been satisfied. It also indicates whether errors
or exceptional conditions have occurred while satisfying the
request.

DODECB removes all unchecked DECBs (i.e., created by issuing READ and
WRITE macro instructions) from a queue of unchecked DECBs main-
tained by the systemn.

GETPOOL requests allocation of an area in virtual storage for use as a
buffer pool and assigns that area to a data control block
describing the data set.

GETBUF obtains a buffer work area from a buffer pool previously
assigned to a data control block (either by a GETPOOL macro
instruction or as a result of having selected the buffer
options provided in the DCB macro instruction) .

FREEBUF returns a buffer work area, obtained by a GETBUF, to its buffer
pool

FREEPOOL releases areas previously assigned to specified data control
blocks as buffer pools (either by a GETPOOL macro instruction
or as a result of buffer options specified by the DCB macro
instruction) .

Access Methods: BSAM 61



BSP backspace one physical record or block on the current magnetic
tape or direct access volume regardless of the direction in
which data is being stored or retrieved on that device.

CNTRL provides a control for card stacker selection, printer carriage
control, and magnetic tape positioning.

PRTOV controls the page format for an on-line printer by testing
channels 9 and 12 on the printer control tape, as overflow
indicators, and allows the user to provide an overflow subrou-
tine to reposition the printer at any desired channel on the
printer control tape.

FEOV advances the system to the next volume of a multivolume data
set before the physical end of the current volume is reached.

POINT causes repositioning of tape or direct access volumes to a spe-
cified block within a data set on that device.

NOTE makes available to the problem programmer the relative position
within a volume of a block just read or written.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to BSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

READ -- Read a Block (S)

The READ macro instruction (for BSAM) transmits a block of data from
an input data set to a user-specified virtual storage area. To allow
overlap of the I/0 operation with processing, the READ macro instruction
returns control to the user's program before the input operation is
complete.

The READ macro instruction may be used to read backwards from magnet-
ic tape.

f T T 1
| Name | Operation|Operand |
b -+ + 1
| [symbol] |READ | decb-symbol, type- {SF|SB} ,dcb-addr |
| | | rarea-addr [,length- {'S'|value}] |
L AL L ]
decb

specifies the name to be assigned to the data event control block
(DECB) , constructed as part of the expansion of the macro instruc-
tion. The DECB is illustrated in Appendix B, Table 7.

type
specifies one of the following:
SF
sequential forward reading of a physical sequential data set.
SB

sequential backward reading from a magnetic tape.
dcb

specifies the address of the data control block opened for the data
set being processed.

62



area
specifies the address of an area in virtual storage into which the
block of data is to be read. If SF is written in the type field,
this operand specifies the address of the first byte of the area;
if SB is written, the address of the last byte is specified.

length
specifies, for format-U records, the number of bytes to be trans-
mitted. If *S' is written, the program attempts to read the maxi-
mum size specified in the data control block, with maximum block-
size of 32,767 bytes. If this parameter is specified for format-F
or format-V records, it is ignored. For format-F and -V blocks,
length is obtained from the BLKSIZE field of the data control
block.

CAUTION: Abnormal termination occurs if:
1. The specified data control block is not validly opened.

2. The specified DECB is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked by a CHECK macro
instruction.

3. An attempt is made to issue a READ macro instruction that causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter specified in the data control block.

4. An attempt is made to read on a device that cannot execute the
request, such as read the printer.

5. An attempt is made to read an OUTPUT data set.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The READ macro instruction returns control to the
user's program before the transmission of data has been completed. To
determine whether the read operation is completed, it is necessary to
issue the CHECK macro instruction before using the data transferred into
the specified area.

The DECB employed for a read operation must not be reused or modified
until the CHECK macro instruction is issued.

After a read operation has been checked, the length of a format-U
block or a truncated block in a fixed-length blocked data set can be
determined from the count field of the Channel Status Word in the DECB.
The number of READs may not exceed that specified in the DCBNCP field in
the data control block without using a CHECK macro instruction.

A data set written on a direct-access device with track overflow spe-
cified must have track overflow specified for all reads referring to
that data set. If a track selected by a READ macro instruction is
flagged as defective, the alternate track is automatically selected.

For any device, the operator is notified if any intervention is required
to complete the operation.

If a READ (type SB) macro instruction is issued for a format-V rec-
ord, the address of the first byte of the record can be calculated by
subtracting the count field in the channel status word from the maximum
block size and subtracting the result from the area address.

Access Methods: BSAM 63



If the length specified in the READ macro instruction for format-U
records is less than the length of the actual physical record, the extra
bytes of data are not transmitted.

The first four bytes on format-V blocks contain control information
passed with the record, when read. The area specified by the area
operand must be large enough to accommodate the maximum record size.

L—- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction.

If the E-form is used, either a DECB symbol or (1) must be specified;
if (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the E- and
I-form are:

r T T 1
| Operand | L-Form | E-Form |
L [ 1 {
L} Ll ¥

| decb | required | decb- |symbol |
| | | M I
[ [ , [ , |
| type i required | required |
] | | |
| MF | MP=I, | MF=E i
L L L 4

EXAMPLE: In example 1, a DECB, with the symbolic name ADECB, is pro-
duced as part of the in-line expansion. It indicates that forward-
reading of the next block in the data set associated with data control
block INDCB should be performed using area INAREA. The length operand,
not written in this example, is required for format-U records.

In example 2, the type operand indicates backward reading of a block
of records from the data set associated with the data control block
INDCB. For format-U records, 100 bytes are transmitted from INAREA+99
to INAREA. If 'S' is specified for the length, the maximum block size
is transmitted. For records other than format-U, the length parameter
is ignored.

EX1 READ ADECB,SF,INDCB,INAREA
EX2 READ ADECB,SB,INDCB,INAREA+99, 100
WRITE —— Write a Block (S)

The WRITE macro instruction writes (for BSAM) a block of data from
virtual storage on a physical sequential data set. To allow overlap of
the I/0 operation with processing, the WRITE macro instruction returns
control to the user's program before the output operation is complete.

64



" L]
Name |Operation|Operand
] ]

] 1
[symbol] |WRITE | decb-symbol, type-SF, dcb-addr,area-addr
| | [,length- {"S'|value}]
L

o . . g e 2oy

RpERR R Tp—

decb
specifies the name to be assigned to the data event control block
(DECB) , constructed as a part of the expansion of this macro
instruction. (Refer to Appendix B, Table 7 for an illustration of
the DECB.)

type
specifies SF for sequential forward writing of the block as part of
the data set.

dcb
specifies the address of the data control block opened for the data
set being processed.

area
specifies the starting address of the area in virtual storage that
contains the block of data to be written. The user must construct
the record-length information in front of each block of format-v
recoxrds.

length

specifies, for format-U records, the number of bytes to be trans-
mitted. If 'S' is written, the maximum block length (specified in
the data control block) for the data set is used. If this paramet-
er is specified for format-F or format-V records, it is ignored.
For format—-F blocks, the length value is obtained from the DCBBLK
field of the data control block. For format-V blocks the length
value is obtained from the first two bytes of the output area (LL) .

CAUTION: Abnormal termination occurs if:

1. A WRITE macro instruction is issued with record length longer than
a track, unless track overflow is specified in the DCB macro
instruction.

2. The data control block specified is not validly opened.

3. The DECB specified is already in use by a previous READ or WRITE
macro instruction; i.e., it has not been checked.

4. An attempt is made to issue a WRITE macro instruction which causes
the number of unchecked READ and WRITE macro instructions to exceed
the DCBNCP parameter in the data control block.

5. An attempt is made to write on a device which cannot execute the
required operation,e.g., write on the card reader.

6. An attempt is made to write a data set opened for INPUT or RDBACK.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: The WRITE macro instruction returns control before
actual transmission of data is completed. To determine whether a write
operation has been completed, the CHECK macro instruction must be issued
for that DECB. The DECB employed for the write operation and the virtu-

Access Methods: BSAM 65



al storage the block occupies must not be altered or used until the
CHECK macro instruction is issued for that DECB.

If a track selected by a WRITE macro instruction is flagged as defec-
tive, an alternate track is automatically utilized. For any device, the
operator is notified automatically if any intervention is required to
complete the operation.

If the data set has been opened for UPDAT, the following considera-
tions apply.

e The WRITE macro instruction returns a block to a physical sequential
data set residing on a direct-access device. The data set must be
opened with the UPDAT option. Only the most recently read block can
be updated and returned.

e The update mode is provided only for data sets on direct-access
devices. Although it is not necessary to update and return each
block, the sequence of operations for those blocks that are updated

must be:
READ Block A
CHECK Await completion of read

WRITE Block A

CHECK Await completion of write

Thus, only the block last read, or its replacement, can be returned
to the data set. Two READ macro instructions can be issued without
an intermediate WRITE; this causes the first block to remain
unchanged on the device.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list (DECB). The format of the
DECB is described in Appendix B.

The E-form macro instruction results in a macro expansion consisting
of only executable instructions. The E-form macro instruction uses the
DECB built for it by the L-form macro instruction. Only MF=E should be
written for the MF= operand in the E-form, because it is the DECB symbol
which names the parameter list of the L-form.

If the E-form is used, either a DECB symbol or (1) must be specified.
If (1) is specified, the address of a DECB must be loaded into register
1 before execution of this macro instruction. Any E-form parameter
replaces the corresponding specified optional or required parameter in
the DECB. If a parameter is not specified in the L-form, it must be
specified in the E-form. Certain required parameters for the EF and L
forms are:

66



1 ' 1 1
| Operand } L-Form | E-Form |
b 1 ¢ 4
| decb ] required ] decb- |symbol |
| | | (m |
| | | _ |
| type | required | required |
I | I |
| MF | MF=L | MF=E I
L 'l | a

EXAMPLE: The proper use of a WRITE macro instruction for format-U reco-
rds is shown. A data event control block is constructed as part of the
in-line macro expansion. A WRITE operation is to be performed from AREA
to the data set defined by DCBOUT. Eight-hundred data bytes are to be
transmitted for a format-U record, but for formats-V or -F, the length
parameter is ignored.

EX1 WRITE ADECB, SF, DCBOUT, AREA, 800

CHECK -- Wait for and Test Completion of READ or WRITE Operation (R)

The CHECK macro instruction (for BSAM) waits, if necessary, for com-
pletion of an I/0 operation requested by a READ or WRITE macro instruc-
tion and detects any errors and exceptional conditions that may occur.
If read or write operations are completed normally, the program resumes
execution at the instruction after the CHECK macro instruction.

As required, the CHECK macro instruction passes control to appropri-
ate exits that are specified by the user in the data control block for
error analysis (SYNAD) and end-of-data set (EODAD). The CHECK macro
instruction automatically initiates volume switching for input data
sets. Additional space for output data sets is automatically obtained
when current space is filled and more WRITE macro instructions are
issued.

The user must issue a CHECK macro instruction to test the I1I/0 opera-
tion associated with a data event control block (DECB) before modifying
or reusing it.

) T
Name | Operation|Operand
L [

b s s e v o

[symbol] |CHECK  |decb- [addrx
| | (1)
L

N

[ e . e oy

decb
specifies the data event control block (DECB), created as part of
the expansion of a READ or WRITE macro instruction.

If (1) is written, the DECB address must be loaded into parameter
register 1 before execution of this macro instruction.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CHECK macro instruction must be used to test for
completion of every READ or WRITE operation. For each data set, the
CHECK macro instruction must be issued in the same order in which the
READ or WRITE operations were requested. A CHECK must be issued before

Access Methods: BSAM 67



the number of outstanding READ or WRITE macro instructions exceeds the
DCBNCP count (specified in the DCB macro instruction) in the data con-
trol block for the data set.

If the CHECK macro instruction tests a DECB that has not been posted
as complete, the user's task waits until the event is completed.

If the CHECK macro instruction tests a READ operation that attempted
to gain access to a block after the last block of a data set had been
read, control is passed to end-of-data set exit (EODAD) whose address is
provided in the EODAD field of the data control block. The task is
abnormally terminated if an EODAD address is not supplied. Refer to
Appendix C for contents of registers when the EODAD routine is entered.

If the CHECK macro instruction determines that the READ or WRITE
operation was not completed correctly because of an I/0 error, control
is given to the user's Synchronous Exrror Exit (SYNAD) routine. Refer to
Appendix B.

The RETURN macro instruction may be used to return to the calling
program from the SYNAD routine. The program may then proceed, if
desired, as if an error had not occurred. For input from any device, or
for output to a unit record device, processing may be continued. In all
other cases, the data control block should be closed.

The task is terminated if an error is detected by the CHECK macro
instruction and the user has not provided a SYNAD routine.

If the CHECK macro instruction detects an end-of-volume condition,
when processing a multivolume data set, processing continues with the
next volume. If there are no additional volumes, the user's EODAD rou-
tine is entered.

A hardware-detected incorrect-length block is not interpreted as an
error by the CHECK macro instruction if format-U records or truncated
blocks of format-F records are being read. To determine length of the
block actually read, the user can examine the channel status word (part
of status indicators pointed to in the DECB) after issuing the CHECK
macro instruction. The first byte of a format-U record read backwards
from magnetic tape may be located by the same method.

The following table lists the results of incorrect-length error in
which length of the record read is different from the DCBBLK for
formats-F and U, or the LL field for format-V.

68



I i) 1
| RECFM | Control Passed To SYNAD |
] 1

F { 4
| Fixed (F) | Yes |
} t 1
| Fixed blocked (FB) |If block is short by a nonmultiple |
1 |of LRECL |
— 1 {
| Fixed standard (FS) | Yes |
L 1

I } i
l Fixed blocked |If block is short by a |
| standard (FBS) |nonmultiple of LRECL* |
L

) 1
| Variable (V) Yes |
1

t 1
| Variable blocked (VB) Yes |
1 L

r } i
| Undefined (U) | No |
: L 1
|*If block is short by a multiple of LRECL, next record causes an end- |
| of-volume condition. If current volume is last of the data set, con-|
| trol is passed to EODAD. If current volume is not the last, proces- |
| sing continues on next volume. |
L i

EXAMPLE: The CHECK macro instruction tests for completion of I/0 opera-
tions in the order in which they are requested. The operand field con-

tains the name of the data event control block specified in the read or

write request.

EX1 READ INDECB, SF, INVEN,WORK, 100
CHECK INDECB
EX2 WRITE OUTDECB, SF,MNTHRPRT,WORK, 100
CHECK OUTDECB
DODECB —-— Remove Unchecked DECBs From a Data Set's DECB Queue (R)

The DODECB macro instruction (for BSAM) removes all unchecked DECBs
from a queue of unchecked DECBs maintained by the system. If all of the
DECBs within the queue have not been posted complete, the I/O requests
associated with them are purged. DODECB will not proceed until all
DECBs have been posted complete either due to the purge or the fact that
they have actually completed.

Access Methods: BSAM 69



Name IOperatlonIOperand

o it e oo . sy
I

[symb01]|DQDECB |decb- addrx
| I M
L1

L

decb
specifies a data event control block (DECB) associated with the
data set for which the DECB dequeueing will be performed. The DECB
need not currently be in the DECB queue.

If (1) is written the DECB address must have been loaded into para-
meter register 1 before execution of this macro instruction.

PROGRAMMING NOTES: The DQODECB macro instruction is normally used in the
SYNAD routine when multiple READ or WRITE macro instructions have been
issued without an intervening CHECK. If DODECB is issued, all unchecked
READ or WRITE requests must be reissued. The I/0 operations associated
with the data set that were not checked are removed from the system. If
any of these DECBs are checked after the DQDECB without an intervening
READ or WRITE, the CHECK will be treated as a NOP.

This facility is of use to users of the IMSK facilities of the DCB
when they have multiple READ or WRITE requests unchecked and want to
initiate their own error retry procedures, or to the user with multiple
unchecked READ or WRITE requests who wants to reinitiate the sequence of
I/0 operations.

Upon return from DQDECB, register 0 contains a count of the number of
unchecked DECBs in the queue, and register 1 contains a pointer to the
list of unchecked DECBs. This queue is read-only and is only valid
until the next 1/0 operation is initiated on the data set.

GETBUF -—- Get a Buffer From a Pool (R)

The GETBUF macro instruction (for BSAM) obtains a buffer from a spe-
cified buffer pool. Buffers acquired by a GETBUF must be returned by a
FREEBUF before they may be obtained again.

r
|Name |Operat10n|0perand

[ s s

i[symbol]|GETBUF |dcb— addrx |,register-absexp
| | | m
L L

i

dcb
specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into register
1 before execution of this macro instruction.

register
specifies a general register into which the control program is to
place the address of the buffer.

CAUTION: The following error conditions result in termination of the
task:

1. The dcb operand specifies an invalid data control block.
2. Buffer size is 0 or greater than 32,760.

70



3. Number of buffers in pool is 0 or greater than 255.
. Data control block not open.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: A buffer pool must have been assigned to the data
control block by use of a GETPOOL, or the buffer option in the DCB macro
instruction; i.e., BUFL= and BUFNO= are supplied in the DCB macro
instruction. Each successive GETBUF macro instruction issued obtains a
buffer in the order in which it exists in the buffer pool. For example,
if a buffer pool contains five buffers, five successive GETBUF macro
instructions would obtain five successive buffers from the buffer pool.

Buffers must be returned to the pool by the FREEBUF macro instruction
before they can be obtained again.

If no buffer is available within the pool, the contents of the
register specified in the GETBUF macro instruction will be set to zero
rather than an address.

The address of the buffer pool is placed in the DCBBCN field of the
data control block.

EXAMPLE: The GETPOOL macro instruction is used to define a buffer pool
of 10 buffers of 100 bytes each. The GETBUF macro instruction is used
to obtain the address of an available buffer in register 5. That buffer
is then used to hold an input block when a data set is being read. (The
length operand is not required in the READ macro instruction) . The
buffer is released by the use of the FREEBUF macro instruction.

GETPOOL INDCB, 10, 100

OPEN (INDCB, (INPUT))
GETBUF INDCB, (5)

READ DECB1,SF, INDCB, (5)
FREEBUF INDCB, (5)

FREEBUF —-- Return a Buffer to a Pool (R)

The FREEBUF macro instruction (for BSAM) returns a buffer (previously
obtained by a GETBUF macro instruction) to a buffer pool so that it will
be freed and can be obtained again by GETBUF. It is not necessary to
free all buffers prior to issuing the CLOSE macro instruction.

Access Methods: BSAM 71



T T T 1
| Name |Operation|Operand |
% } 4 1
| [symbol] | FREEBUF |dcb-|addrx|,register-absexp |
| | | m I
L X A1 J
dcb
specifies the address of the data control block opened for the data
set being processed.
If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction.
register

specifies the general register that contains the address of the
buffer being returned to the pool.

CAUTION: Error conditions that result in termination of the task are:

1. The dcb operand specifies the address of an invalid data control
block.

2. Buffer pool address is not in data control block (GETBUF was not
invoked before FREEBUF) .

3. Buffer address specified by user does not belong to buffer pool.

4. Buffer specified by user is not in use (GETBUF was not used to
obtain buffer) .

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: To release a buffer by FREEBUF, a buffer pool must
have been assigned to the data control block, and the specified buffer
must have been obtained by the GETBUF macro instruction.

GETPOOL -- Get a Buffer Pool (R)

The GETPOOL macro instruction (for BSAM) requests allocation of an
area of virtual storage for use as a buffer pool. The buffer pool is
assigned to the specified data control block:

T T L]

| Name | Operation|Operand

[ L 4

r 1 !

| [symbol] | GETPOOL |dcb-|addrx|,|number-value,length-value

| | | M (0)

L 4 L

dcb
specifies the address of the data control block to which the buffe
pool is to be assigned. If (1) is written, the address must be in
parameter register 1 prior to execution of this macro instruction.

number
specifies the number of buffers to be in the pool. The maximum
value is 255.

length

specifies the number of bytes in each buffer. The value is
increased, if necessary, by the GETPOOL routine to be a doubleword

72

[ e

r



multiple. The maximum value is 32,760 bytes. If (0) is written,
the value giving the number of buffers must be in the two high-
order bytes of register 0, and the value giving the length of each
buffer must be in the two low-order bytes of register 0, prior to
execution of the macro instruction.

CAUTION: Failure to observe these restrictions results in termination
of the task.

1. Only one buffer pool may be assigned to a data control block at one
time.

2. Buffer length must be less than, or equal to, 32,760.

3. Number of buffers must be less than, or equal to, 255.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: If the GETPOOL macro instruction is used, it must be
executed prior to the execution of any GETBUF macro instruction which
refers to the buffer pool area allocated by GETPOOL.

The FREEPOOL macro instruction should be issued to return the allo-
cated buffer pool to the system, unless a CLOSE is issued for the data
control block to which the buffer pool is assigned.

EXAMPLES: EX1 constructs a buffer pool consisting of two buffers, each
136 bytes long, in an area of virtual storage. This buffer pool is
assigned to the data control block REPORT. EX2 indicates that the
required parameters were in registers 0 and 1 prior to execution of the
macro instruction.

EX1 GETPOOL  REPORT, 2,136
EX2 GETPOOL (1M, (0)

FREEPOOL -- Free a Buffer Pool (R)

The FREEPOOL macro instruction (for BSAM) releases an area that had
previously been assigned as a buffer pool to a specified data control
block. The area must have been acquired through either the execution of
a GETPOOL macro instruction or by the buffer option described in the DCB
macro instruction; i.e., when the DCB macro instruction was written,
BUFNO= and BUFL= were included.

T L]
Name | Operation|Operand
1 i

r
|
1
T
|
|
L

e o e ool e sl

T
[symbol]iFREEPOOL | dcb- jaddrx
| | (M
A

L

dcb
specifies the address of the data control block to which the buffer
pool was assigned.

If (1) is written, the address must be in parameter register 1
prior to execution of this macro instruction.

CAUTION: If the dcb operand does not specify the address of a valid
data control block, the task is terminated.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

Access Methods: BSAM 73



PROGRAMMING NOTES: If the associated data set is processed by means of
BSAM, FREEPOOL may be issued as soon as the buffers are no longer
required.

The area released by FREEPOOL must have been acquired through the
execution of a GETPOOL macro instruction, or by the buffer option
described in the DCB macro instruction; i.e., BUFNO= and BUFL= were sup-
plied in the data control block.

EXAMPLES: EX1 releases the buffer area assigned to the data control
block OUTPUT. EX2 releases the buffer area assigned to the data control
block whose address is in register 1.

EX1 FREEPOOL OUTPUT
EX2 FREEPOOL (1)
BSP -— Backspace a Block (R)

The BSP macro instruction (for BSAM) backspaces a block on the cur-
rent magnetic tape or direct-access volume. Backspacing is always
toward load point (or its equivalent on direct-access) regardless of the
OPEN macro instruction's parameters or the direction of reading.

This macro instruction is applicable only to magnetic tape or a
direct-acces device and becomes a NOP for other devices.

r v T h
| Name |Operation|Operand |
L 1 [

T 1 T 'I
| [symbol] |BSP | dcb- jaddrx |
| | | (M |
L L L 4
dcb

specifies address of data control block opened for the data set to
be backspaced.

If (1) is written, the data control block address must have been
loaded into parameter register 1 before executing this macro
instruction.

CAUTION: Abnormal termination occurs if:

1. Data control block specified by the user is not validly opened.
2. Track overflow option is specified.
3. All read and write operations have not been checked for completion.

If this macro instruction is included in a module that is declared pri-
vileged (through use of the DCLASS macro instruction), the address of a
save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Following execution of the BSP macro instruction,
register 15 contains a return code of 0 if the operation is completed
normally. It also contains a return code of 0 if the operation encoun-
tered a permanent positioning error, in which case the next CHECK of a
READ or WRITE passes control to the SYNAD routine.

If a tape mark is encountered on a backspace, the tape is reposi-
tioned to the tape position it was at before BSP was issued and a return
code of 4 is placed in register 15.

74



If user attempts to backspace into a header or trailer label track on
direct-access volumes, backspacing does not occur and a return code of 4
is placed in register 15.

All read or write operations must be checked for completion before
the BSP macro instruction is executed.

If more than one BSP is issued without an intervening READ or WRITE,
then NOTE, POINT, or CNTRIL macro instructions may be more efficient.

CNTRL -- Control On-Line Input/Output Devices (R)

The CNTRL macro instruction (for BSAM) performs non-data-transfer
operations on magnetic-tape drives and online card readers and printers.
The functions provided are: card-stacker selection, printer carriage
control, and magnetic-tape repositioning.

Since online card readers and printers cannot be addressed directly
by most users of the system, only users with proper system authorization
may use this macro instruction for card-stacker selection and printer
carriage control. All users, however, may use this macro instruction
for magnetic-tape repositioning.

T
Name |Operation|Operand
(]

[symbol]iCNTRL dcb- Jaddrx|, |action-code [,numbexr-value]
| (M (0)

L

b e e i e

dcb
specifies the address of data control block opened for data set
being processed. If (1) is written, the address must be loaded
into parameter register 1 before execution of this macro
instruction.

action
specifies, by a code, the service to be performed:

SS - selects a stacker for a card reader (stacker 1 or 2).
SP - spaces lines on a printer; space = 1, 2, or 3.

SK - skips to channels 1 through 12 on carriage control tape for a
printer.

BSR - backspaces over a specified number of blocks on magnetic
tape. One block is assumed if number operand is omitted. BR
is the abbreviated code.

BSM - moves backward past a tape mark and forward spaces over the
tape mark. A number value of 1 is always assumed. BM is the
abbreviated code.

FSR - forward spaces over a specified number of blocks on magnetic
tape. One block is assumed if number operand is omitted. FR
is the abbreviated code.

FSM - moves forward past a tape mark and backspaces over the tape

mark. A number value of 1 is always assumed. FM is the
abbreviated code.

Access Methods: BSAM 75



FSF - moves forward past a tape mark. A number value of 1 is
always assumed. FF is the abbreviated code.

BSF - moves backward past a tape mark. A number value of 1 is
always assumed. BF is the abbreviated code.

WTM - writes a tape mark on magnetic tape. A number value of 1 is
always assumed. WM is the abbreviated code.

REW - rewinds magnetic tape. RW is the abbreviated code.

RUN - rewinds and unloads magnetic tape. RU is the abbreviated
code.

ERG - executes an erase gap for magnetic tape. ER is the abbre-
viated code.

If (0) is written, the two-character action code must be placed in
the two high-order bytes of parameter register 0 before execution
of this macro instruction. In the case of three-character action
codes, the abbreviated code must be placed in those bytes.

number
specifies a value for the stacker number, number of lines to be
skipped on the printer, printer carriage-tape channel, or number of
blocks on magnetic tape to qualify the action operand. Maximum
value is 32,767. If (0) is written, the value must be placed in
the two low-order bytes of parameter register 0; value is a binary
integer.

CAUTION: If magnetic-tape positioning is performed, an uncorrectable
tape-spacing error results in linkage to the user's SYNAD routine; this
does not apply to action codes SS, SP, SK, REW, or RUN. Refer to Appen-
dix B for a discussion of SYNAD.

Abnormal termination occurs if:
1. Action code is undefined or not applicable.
2. Number parameter is undefined for the action parameter.

3. A SYNAD-type error occurs and the user has not provided a SYNAD
address.

4. Data control block specified by the user is not a validly opened
data control block.

5. Outstanding read or write operations have not been checked.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: For stacker selection, the DCBNCP field of data con-
trol block must be 1. Each READ macro instruction directed to a card
reader must be followed by a CHECK macro instruction and a stacker
selection CNTRL macro instruction directed to the same device. Stacker
selection is not available for card punch through the use of the CNTRL
macro instruction; however, the user may specify the desired stacker
selection by changing, in his program, the DCBSTA field in the data con-
trol block. See Appendix F.

READ and WRITE operations must be checked for completion before the
CNTRL macro instruction is issued. If used to control stacker selec-

76



tion, the CNTRL macro instruction must be issued for each read
operation.

For printers, a skip to a specified channel results in no action if
the device is already at that channel.

Control is returned to user if a tape mark or a load point is encoun-
tered during an attempt to forward space or backspace blocks; control is
not passed to the SYNAD routine. Register 15 contains binary zeros if
operation is completed normally; otherwise, it contains a count of the
remaining number of forward spaces or backspaces that were not completed
in its low-order two bytes.

FEOV —-- Force End of Volume (R)

The FEOV macro instruction (for BSAM) directs TSS/360 to advance to
the next volume of a data set before the end of the current volume is
reached. This macro instruction is applicable only to data sets mounted
on magnetic tape or direct-access devices.

r T 1
| Name |Operation|Operand |
L [

F 1 1
| [symbol] | FEOV dcb- Jaddrx |
| | Q) |
1 L J
dcb

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction.

CAUTION: The following errors cause the results indicated:

Exrrors

-

1
Result |
i

|The dcb operand specifies address of a data control No action

|block that is not open

|The dcb operand specifies address of an invalid data Task terminated
control block

(

|Data set is not processed by BSAM (magnetic tape or Task terminated
|{direct-access devices)

T
|
i
| |
| |
I |
| I
| |
| |
| |
| [
|
I
J

|
|Not all BSAM READs and WRITEs to data set are checked. | Task terminated
[ L

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction) , the address of
a save area must be placed in register 13 before execution of this macro
instruction.

EXAMPLE: In the following example, the control program is directed to
advance to the next volume of the data set associated with the data con-
trol block REPORT.

EX1 FEOV REPORT

Access Methods: BSAM 77



POINT -- Position to a Block (R)

The POINT macro instruction (for BSAM) repositions a magnetic-tape or
direct-access volume to a specified block within a data set on that
volume. Thus the POINT macro instruction permits reading or writing of
a sequential data set from any specified position.

The NOTE macro instruction may be used to provide the positioning
information that is required for the POINT macro instruction.

r T T 1
| Name |Operation|Operand |
1 4 }

T ] 1 "
| [symbol] | POINT {dcb-) addrx|,loc-|addrx |
| | ] m (0) ]
L 1 i 4
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction.

loc
specifies the starting address of a four-byte field containing a
block identification. The field must start on a fullword boundary.

If (0) is written, the address of the block identification must be
loaded into parameter register 0 before execution of this macro
instruction. The initial relative address for the first record on
a direct-access device is (TT=0,R=0) . The initial relative address
for the first record on a magnetic tape device which was not opened
for RDBACK or MOD is (CC=0). The initial relative address for the
first record on a magnetic tape which was opened for RDBACK or MOD
is CC=(Block Count from trailer label).

CAUTION: Abnormal termination occurs if the data control block speci-
fied by the user is not validly opened.

Executing a POINT macro instruction for a direct-access device
results in an error if a volume cannot be properly repositioned or if an
invalid block identification is specified. Such an error causes the
next read or write operation to be completed unsuccessfully and, upon
execution of a CHECK macro instruction, causes control to be given to
the user's SYNAD routine. If an error occurs during the positioning of
magnetic tape, the POINT macro instruction passes control immediately to
the SYNAD routine.

The POINT macro instruction must not be issued for a data set on an
unlabeled magnetic tape volume or one containing nonstandard labels, if
the data set is opened under either of these conditions:

1. DDEF macro instruction or command specifying disposition parameter
of MOD.
2. OPEN macro instruction specifying RDBACK.

The POINT macro instruction is applicable only to direct-access and
magnetic-tape devices. An immediate return with no action is taken for
other devices.

For direct-access volumes, a user may reposition to any point on the
volume that is assigned to the data set. For a magnetic-tape volume
which is opened for OUTPUT, OUTIN, or INOUT, the user must not reposi-
tion beyond the last record written.

78



If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: All read or write operations must be checked for
completion before the POINT macro instruction is executed. The user
must make sure that the block identification previously provided by a
NOTE macro instruction, and now being used in the POINT macro instruc-
tion, refers to the same volume.

If the POINT macro instruction is used on a data set opened in the
UPDAT mode, a READ macro instruction must be issued following the POINT
macro instruction. The WRITE (update mode) specifies that only the last
record read may be updated and that the updated record written must
replace the last record read. Since a POINT macro instruction is used
to alter the next sequential I/0O address, a WRITE (update mode) does not
return the updated record to the correct address.

If the user points to a block with a count provided by a NOTE issued
after a read-backward, another read backward should be executed to read
the block provided by the previous NOTE. A read-forward does not read
the block specified by the NOTE.

A POINT macro instruction executed after a WRITE macro instruction
returns the identification field of the block just written. To reposi-
tion so that writing will begin at the next block, the user should add
binary 1 to the low-order byte of the field. For a direct-access
device, a binary 1 is added to the Z-byte of the TTRZ field. For mag-
netic tape, the binary 1 is added to the low-order C of the ZzZCC field.

EXAMPLE: In the following example, the POINT macro instruction is used
to reposition a volume to a block which was identified previously by a
NOTE macro instruction.

WRITE OUTDECB, SF,MYDCB, (4) , 100 This is the record to which
the program will reposition.

CHECK OUTDECB
FREEBUF MYDCB, 4

NOTE MYDCB Note the position of the rec-
ST 1,SAVE ord under consideration.
GETBUF MYDCB, 4 Reposition to the record
POINT MYDCB,SAVE being considered and

READ INDECB,SF,MYDCB, (4) ,100 read it.

Access Methods: BSAM 79



NOTE -—- Provide Position Feedback (R)

The NOTE macro instruction (for BSAM) causes the relative position
within a volume of a block just read or written to be placed in register
1. This relative position identifies the block for subsequent reposi-
tioning of the volume.

NOTE provides a block count for magnetic tape. For direct-access
volumes, the count is the track number relative to the beginning of the
data set portion on the volume and the record number within the track.

The NOTE macro instruction normally provides information for a subse-
quent POINT macro instruction.

r T T 1
| Name |Operation|Operand |
L H i

r L] I "
| [symbol] | NOTE | dcb- jaddrx |
I | | (m |
L 1 L J
dcb

specifies the address of the data control block opened for the cur-
rent operation. If (1) is written, the data control block address
must have been loaded into parameter register 1 before execution of
this macro instruction.

CAUTION: Abnormal termination occurs if the data control block speci-
fied by the user is not validly opened.

For a data set on magnetic tape, the NOTE macro instruction should
not be issued for an unlabeled data set or a data set containing non-
standard labels, if the data set is opened under either of these
conditions:

1. DDEF macro instruction or command has a disposition parameter of
MOD.
2. OPEN macro instruction specifies RDBACK.

The current block count in the data control block is not valid under the
above conditions.

For a data set on magnetic tape, a NOTE macro instruction issued
after a POINT macro instruction, without an intervening READ or WRITE
macro instruction, does not return the relative address of the last rec-
ord read or written. NOTE returns the data control block count minus 1,
if the last I/0 operation was not a READ (type SB) ; or it returns the
data control block count plus 1, if the last I/O operation was a READ
(type SB) .

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: All READ or WRITE requests must be checked for com-
pletion before the NOTE macro instruction is executed. The provided
block identification is always within the current volume.

Following execution of the NOTE macro instruction, the system places
the block identification of the last block read or written in parameter
register 1.

The form of the block identification depends on whether magnetic tape
or direct-access devices are being used as follows:

80



Magnetic Tape: If magnetic tape is used, the block identification is a
four-byte block count of the form zzCC, where:

zZ ~ binary zero bytes;
CC - the block number (binary) within the volume.

The block identification may be used in the POINT macro instruction
to reposition the magnetic tape to the location of the block.

Direct-Access Device: If a direct-access device is used, the block
identification is a four-byte value of the form TTRz, where

TT - the track number relative to the beginning of the data set on the
current volume (first track equals 0).

R -~ the block number on that track (first data block equals 0).

z - a binary zero byte.

If the last operation was a WRITE, an additional parameter is pro-
vided by NOTE in register 0 in the form zzLL, where:

zz = binary zero bytes.
LL = the number (in binary) of bytes remaining on that track.

The initial relative address for the first record on a direct-access
device is (TT=0, R=0). The initial block count for the first record on
a magnetic-tape device which was not opened for RDBACK or MOD is (CC=0) .
The initial block count for the first record on a magnetic tape, which
was opened for RDBACK or MOD, is CC minus 1 (CC=Trailer Label Block
Count) . NOTE is applicable only to direct-access and magnetic-tape
devices. The address, sent back in general register 1 for any other
equipment type, is the data control block count minus one and is pre-
ceded by two bytes of binary 0.

PRTOV -- Test for Printer Carriage Overflow (R)

The PRTOV macro instruction (for BSAM) controls the page format for
an on-line printer. The user may test channel 9 or 12 of the printer
control tape to determine if an overflow condition exists. Since the
printer cannot be addressed directly by most users of the system, this
macro instruction may be issued only by users with proper system
authorization.

Before testing overflow indicators, PRTOV waits for completion of all
previously requested printing.

{Name iOperationiOperand ]
L 1 i - ,{
i[symbol]iPRTOV idcb— addrx| ,number- {912} |,userrtn- [addrx |
| | | (nm (0) |
L L i - 1
dcb

specifies the address of the data control block opened for the data
set being processed.

If (1) is written, the data control block address must be loaded
into parameter register 1 before execution of this macro
instruction.

number

specifies either 9 or 12 as the channel to be tested for an over-
flow condition.

Access Methods: BSAM 81



userrtn
specifies the address of a routine that is to be given control if
the appropriate program indicator (for channels 9 or 12) is on when
tested. If this operand is omitted, and if the overflow condition
exists, an automatic skip to channel 1 is performed prior to the
next WRITE operation.

CAUTION: Abnormal termination occurs if the data control block speci-
fied by the user is not validly opened.

The address of a save area must be placed in register 13 before
execution of this macro instructiom.

PROGRAMMING NOTES: This macro instruction is applicable only for a
printer.

The user routine, if it uses a PSECT, must use the same PSECT as the
routine that issues the PRTOV macro instruction. To continue processing
at the point at which PRTOV macro instruction was issued, the user rou-
tine must branch to the address that was contained in general register
14 upon entry to the user routine. A RETURN macro instruction may not
be used for this purpose.

If no user routine is specified, execution of the problem program
continues after a PRTOV macro instruction is issued. When the line
associated with the first WRITE macro instruction issued after the PRTOV
is to be printed, the appropriate program indicator is tested. An auto-
matic skip to channel 1 is performed if an overflow has occurred.

If a user routine is specified, the control program waits after a
PRTOV macro instruction is issued. When all prior print operations are
complete, the appropriate program indicator is tested.

Upon entry to the user's overflow routine, the contents of the gener-
al registers are:

I T 1
| Register | Contents |
b 4 —- 1
1 0 |Unspecified |
[ | |
| 1 {Address of data control block |
I | I
] 2 to 13 |Same as existed before macro instruction was executed |
| I I
| 14 |Return address |
| I
| 15 |Address of userrtn routine |
L L 1
EXAMPLES:

EX1 PRTOV OUTDCB, 9

EX2 PRTOV PRINTDCB, 12, OVERFLOW

In EX1, an overflow condition on channel 9 of the printer-control
tape results in an automatic skip to channel 1 since the operand,
usexrrtn, is omitted. In EX2, an overflow condition on channel 12
results in control passing to the user's overflow routine.

82



QUEUED SEQUENTIAL ACCESS METHOD

The queued sequential access method (QSAM) consists of the TSS/360
data set management facilities that enable a user to access blocked or
unblocked physical sequential data sets. QSAM, in contrast to BSAM,
permits the programmer to store and retrieve records of a sequential
data set without coding his own blocking/deblocking and buffering rou-
tines. A sequential data set can be stored on, or retrieved from, disk,
tape, or cards, and can be printed out by a printer. The record format
within each such data set can be fixed length (blocked or unblocked),
variable length (blocked or unblocked), or undefined length (unblocked
only) . Such attributes are unique for each data set; they must be
defined to the system before a data set can be accessed by QSAM. The
macro instructions provided to a user, by QSAM, for accessing a data set
in an appropriate manner, are summarized below.

GET used for reading logical record in a sequential order. The ini-
tial GET reads in a physical record transferring it from the
input device to a system maintained buffer area and, when the
physical record is blocked, locates the first sequential logical
record within the physical record. Each subsequent GET locates
the next sequential logical record within the physical record
until all logical records within that physical record have been
processed; then the system reads in another physical record auto-
matically and locates logical records as indicated above.

PUT for writing new or altered logical records into a physical
sequential output data set.

PUTX for writing an updated or identical logical record directly from
an input data set to an output data set, without altering the
length of the record. The next sequential logical record con-
tained in an input buffer area (where it may have been modified)
is transferred to the output buffer as the next sequential output
record. The system must be positioned at the next sequential
logical input record by issuing a locate mode GET macro instruc-
tion prior to the PUTX

RELSE causes the remaining records of the current input buffer to be
ignored, locates the next sequential physical record's input
buffer area and positions the user at the first logical record in
that buffer area. The next GET macro instruction will retrieve
the first logical record from the new input buffer.

TRUNC causes the current output buffer to be regarded as filled, trans-
fers a physical record from that output buffer to the output
device, and positions the system at the next buffer area. The
next PUT issued causes the user to be positioned at the new out-
put buffer area in which he can construct the next logical
record.

SETL enables a user to logically position a data set at its beginning,
end, at the previous record, or at any logical record within a
blocked sequential data set. Subsequent PUT or GET operations
will start at this new position.

CNTRL provides control for card stacker selection, printer carriage
control, and magnetic tape positioning

PRTOV controls the page format for an on line printer by testing chan-
nels 9 and 12 on the printer control tape, as overflow indica-
tors, and allowing the user to provide an overflow routine to
reposition the printer at any desired channel of the printer con-
trol tape.

Access Methods: QOSAM 83



Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to QSAM data set management and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

GET -- Get a Logical Record (R)

The GET macro instruction (for QSAM) can be specified in either lo-
cate mode or move mode. In locate mode, the GET macro instruction
locates the next sequential logical record in an input data set and
places its address in register 1. The user may then operate on the rec-
ord where it is or move it to a work area. The logical record pointed
to by register 1 resides in an input buffer where a system-scheduled
read operation placed it. In move mode, the GET macro instruction
acquires the next sequential logical record and automatically moves it
from the input buffer to an area in virtual storage specified by the
user.

r T T 1
| Name | Operation|Operand |
L } 1

r T 1 r "
| [symbol] |GET | dcb- jaddrx||, area- [addrx |
| | | m (0) I
L L L J
dcb

specifies the address of the data control block opened for the data
set being processed. If (1) is written, the address must have been
loaded into parameter register 1 before execution of the macro
instruction.

area (for move mode only)
specifies the address of the user's work area into which the record
is to be moved. If (0) is written, the address must have been
loaded into parameter register 0 before execution of the macro
instruction.

CAUTION: If either of the following error conditions exists as a result
of the execution of the GET macro instruction, control will be passed to
the Synchronous Error Exit (SYNAD) routine specified in the data control
block;

1. The next record to be processed starts a block that could not be
read satisfactorily because of an error condition.

2. A preceding PUTX macro instruction could not be executed without
resulting in an error condition. This situation is discovered by
the GET macro instruction when working in update mode.

3. When processing variable length records, the length of a block (LL)
does not equal the actual block size.

4. When processing variable length records, the lengths of each indi-
vidual record (11) within a variable length block do not add up to
the length indication of the block (LI).

When the SYNAD routine is given control, the general registers and sta-
tus indicators are set as shown in Appendix B.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

84



PROGRAMMING NOTES: 1In locate mode, the control program returns the
address of the next logical record in parameter register 1, and places
the record length in the logical record length (DCBLRECL) field of the
data-control block. In the move mode, the area address provided by the
user is returned in register 1 and the logical record length of the
accessed record is placed in DCBLRECL. Because QSAM does not support
the substitute-mode GET macro instruction, this feature (i.e., return of
the area address) provides compatibility which allows the time sharing
system to use the move mode in order to execute programs originally
written to use the substitute-mode GET.

If a GET is requested beyond the end of a data set, as a result of
sequential operation or the user EODAD exit is taken, see Appendix C.

EXAMPLE: In the following example written in the move mode the next
record from the data set associated with the DCB labeled STAT is moved
to the workarea labeled SAMPLES. The address of the word area is
returned to the user in parameter register 1.

EX1 GET

STAT, SAMPLES

STAT DCB

DSORG = PS,

SAMPLES DS 20F

PUT —- Include a Record in an Output Data Set (R)

The PUT macro instruction (for QSAM) may be specified in either lo-
cate mode or move mode. In locate mode, the PUT macro instruction
places in register 1 the address of an area within an output buffer
large enough to contain an output record. The user should subsequently
construct, at this address, the next record for incorporation into the
output data set. In move mode the PUT macro instruction moves a record
from a user specified area in virtual storage to an output buffer. When
an output buffer is filled, the system places its contents into the out-
put data set.

T T 1
Name | Operation|Operand |
1 L
t } i
| [symbol] | PUT | dcb~ |addrx]| |, area- Jaddrx |
| | m (0 |
i i
dcb
specifies the address of the data control block opened for the data
set being created. If (1) is written, the address must have been
loaded into parameter register 1 before execution of this macro
instruction. In locate mode, after execution of the macro instruc-
tion the address of the next buffer segment large enough to hold
the next logical record is returned in register 1.
area (for move mode only)

specifies the address of the record

If (0) is written, the address must
register 0 before execution of this

to be moved into the buffer.

have been loaded into parameter
macro instruction.

Access Methods: QSAM 85



CAUTION: Any exceptional condition resulting from the execution of a
PUT macro instruction causes control to be passed to the user's synch-
ronous error exit (SYNAD) routine. 1In this case, the general register
and the exceptional condition fields in the data control block are set
as shown in Appendixes B and F.

The address of a save area must be placed in register 13 before
execution of this macro instruction.

PROGRAMMING NOTES: Before executing this macro instruction, the user
must place the length of the record in the logical record length field
(DCBLRECL) of the data control block according to the format of the log-
ical records as follows:

For format-F records, the logical record length is taken from
DCBLRECL. This field should not be altered after the DCB is opened or
an incorrect length block will be written. This will cause abnormal
termination.

For format-U records, the actual record length must be known before
the record is constructed, and must be placed in the DCBLRECL field.
Abnormal termination will occur if DCBLRECIL is greater than DCBBLKSI.

For format-V records, one of the following procedures must be chosen
depending upon whether locate mode or move mode is used. For locate
mode the actual record length must be placed in the DCBLRECL field or
anestimated record length (not less than the actual record length) must
be placed in the DCBLRECL field. If the estimated record length in
DCBLRECL is greater than DCBBLKSI, an abnormal termination will occur.
For move mode, the length '11' of each logical record determines the
amount of buffer space needed. If 'll* is greater than DCBBLKSI, an
abnormal termination is taken. For PUT move mode, the area address pro-
vided by the user is returned in register 1. Because QSAM does not sup-
port the substitute mode PUT macro instruction, this feature (return of
the area address) provides the compatibility which allows move mode to
be used in order to execute programs originally written for 0S5/360 which
use substitute mode PUT.

EXAMPLE: In the following example, the use of a move-mode PUT macro
instruction is shown. The address of the next logical record to be pro-
cessed is returned in register 1 following the locate-mode GET macro
instruction. The record is part of an input data set associated with
the data-control block INVEN. After the record is processed within the
input buffer, the move-mode PUT macro instruction is used to move the
record to an output buffer. Before the PUT macro instruction is
executed, the address of the record is placed in parameter register 0.
The branch instruction is used to reenter the processing loop.

AAV GET INVEN

LR 0,1
POT REPORT, (0)
B AAV
PUTX- —— Include a Logical Record in an Output or Updated Data Set (R)

The PUTX macro instruction (for QSAM) causes the next logical record
contained in a buffer area of an input data set to be written as the

86



next sequential logical recoxrd of an output or updated data set. This
macro instruction may be specified in either update mode or output mode.
In update mode only, the output and input data sets are one and the
same, and only the dcbout-addrx operand is required. In output mode,
two different data sets are used, necessitating that both operands must
be specified.

v T T
Name |Operation]Operand
i 1

4 (0)

[ Sap——

v
[symbol] | PUTX dcbout- |addrx ||, dcbin~ |addrx
|

']

dcbout-addrx
specifies the address of the data control block opened for the out-
put data set. In the update mode the output and input data sets
are the same and only the dcbout-addrx operand is required. If (1)
is written, the address must have been loaded into parameter
register 1 before execution of this macro instruction. The DCB
referred to in the dcbout operand must be opened for UPDAT if the
update mode is used or it must be opened for OUTPUT if the output
mode is used.

dcbin-addrx
specifies the address of the data control block opened for the
input data set. If (0) is written, the address must have been
loaded into parameter register 0 before execution of this macro
instruction.

CAUTIONS: The following cautions apply:
e The data set must reside on a direct access device.

e For blocked-format records, if any logical record in a block has been
returned by a PUTX macro instruction, the control program will not
write the entire block back to the data set until all the logical
records in that block have been processed.

e The length of the block and the length of each logical record cannot
be altered.

e Additional logical records cannot be inserted into the block nor can
existing logical records be deleted from the block.

PROGRAMMING NOTES: Any exceptional condition resulting from the execu-
tion of a PUTX macro instruction causes control to be passed to the
user's synchronous error exit (SYNAD) routine.

The PUTX macro instruction must always be preceded by a locate mode
GET macro instruction. This GET macro instruction must specify the same
data set as specified by an update mode PUTX macro instruction, or it
~ must specify the data set that is used as input by an output mode PUTX
macro instruction.

Since the update mode uses only a single data set the user need only
issue a PUTX for those logical records which are to be updated. Those
records which have not changed can be bypassed, and thereby remain
unchanged, simply by issuing two successive GET macro instructions (see
EXAMPLE below.)

In output mode two distinct data sets are used and a PUTX is required
for each logical record that is to be included in the output data set
being created. Abnormal termination will occur if these requirements
are violated.

Access Methods: QSAM 87



COMPATIBLE RECORD FORMATS AND BUFFERING TECHNIQUES: Normally, when the
PUTX macro instruction is used, data sets with the same record formats
and buffering techniques are processed together. However, the control
program supports certain variations from this procedure. Table 2 indi-
cates which combinations of input and output record formats are
acceptable.

Table 2. Acceptable record formats for QSAM and the PUTX Macro

Instruction

r T 1 1 ] T 1
| dcbout | to U | to F | to FB | to V | to VB |
| (move mode) | | [ [ | [
|dcbin i m | @ | @ | 3 | (3) |
| (Locate mode) | | | | | |
1 L1 1 i } ] {
) L) ] L] L) T

| from U | s - 1-= | =-— 1 =-— |
| from F | S | S | S | -—= ] - |
| from FB | S | S | S | - | -——- |
| from Vv | S | —— | --- | S | S |
| from VB | s | -— | --- | S | S |
% 1 1 1 1 1 ,'
|where: |
| !
| ——- indicates unacceptable record format combination |
! |
| s indicates acceptable record format combinations (only simple |
| buffering supported by TSS) |
| |
| U indicates format-U records |
I !
| F indicates format-F records ]
I |
| FB indicates format-F blocked records ]
| I
| v indicates format-V records |
| I
| VB indicates format-V blocked records |
L J

Notes for Table 2:

1. The block size for the format-U output data set must be as large as
the largest logical record size of the input data set.

2. The logical record size for format-F and —-FB records must be the
same for both data sets.

3. The maximum logical record for format-V and -VB records must
correspond.

EXAMPLE: In the following example, the use of a PUTX macro instruction
when records are being updated is shown. The locate-mode GET macro
instruction provides the address of the next record to be updated. The
PUTX macro instruction, after processing the record, returns it to the
data set. The conditional branch instruction tests the condition code.
If the record is to be updated, the next sequential instruction is
executed; if it is not to be updated, another GET macro instruction will
be issued to locate the next record. The unconditional branch following
the PUT macro instruction is used to reenter the processing loop. When
all the input records are processed, the EODAD routine is given control.

88



LLS GET DCBA

RELSE —-- Release an Input Buffer (R)

The RELSE macro instruction (for QSAM) causes the remaining contents
of the current input buffer to be ignored. The next GET macro instruc-
tion will retrieve the first logical record from the next input block.

T T El h)
| Name |Operation|Operand |
t 1 } Jd
r ] 1 1
| {symbol] |RELSE | dcb- Jaddrx |
| I | M I
L L 1 i
dcb

specifies the address of the data control block opened for the
input data set.

If (1) is written, the DCB address must have been loaded into para-
meter register 1 before execution of this macro instruction.

CAUTION: A RELSE macro instruction is ignored if used with unblocked
records, or if all records in a buffer have been processed, or if it
immediately follows another RELSE macro instruction.

If a RELSE is issued before the first GET of the data set, the macro
instruction is ignored.

PROGRAMMING NOTES: If a data set is being read backwards, the RELSE
causes the same results as in forward reading.

TRUNC -- Truncate an Output Buffer (R)

The TRUNC macro instruction (for QSAM) causes the current output
buffer to be regarded as filled. The next PUT macro instruction will
use the next block to hold a logical record.

T ¥
Name |Operation|Operand
1 [l

r
|
t
1
|
|
[

| SRR T

[symbol]TTRUNC idcb— addrx
| l M

L

Access Methods: QSAM 89



dcb
specifies the address of the data control block opened for the out-
put data set.

If (1) is written, the DCB address must have been loaded into para-
meter register 1 before execution of this macro instruction.

A TRUNC macro instruction will be ignored if used with unblocked
records, or when a buffer is full, or if it immediately follows another
TRUNC macro instruction.

CAUTIONS: The TRUNC macro instruction is meaningful only with format-F
and -V blocked records. Its use with format-F blocked records means
that the data set cannot be considered to contain standard blocks. When
the data set is read, the RECFM operand of the DCB macro instruction
must not contain an S.

PROGRAMMING NOTES: Any exceptional condition resulting from the execu-
tion of a TRUNC macro instruction causes control to be passed to the
user's synchronous error exit (SYNAD) routine.

If a TRUNC is issued on a data set OPEN'ed for UPDAT, the following
GET will retrieve the first logical record from the next block. The
last block will be written out including all logical records read plus
those not updated by a PUTX.

If a TRUNC is issued before the first PUT of a data set, the TRUNC
macro instruction is ignored.

CNTRL, —— Control a Printer or Stacker (R)

The CNTRL macro instruction (for QSAM) provides stacker selection of
an on-line card reader, or carriage control of an on-line printer.

r T T 1
| Name jOoperation|Operand |
L i 1
1 ] T T "
| [symbol] |CNTRL | dcb-Jaddrx|, jaction- [SS|SP|SK] , (number-value] |
| | | (M (0 |
L ' N L ]
dcb
specifies the address of the data control block (DCB) opened for
the data set being processed.
action
specifies that the controlling action to be performed is one of the
following:
SS - select a stacker (the number operand values are 1 or 2).
SP - space lines on the printer (the number operand values are 1, 2
or 3).
SK - skip to a carriage control tape channel (the number operand
values are 1 through 12).
number

specifies a value for the controlling action to be performed, as
described in the preceding operand.

A skip to a given carriage control tape channel will cause no
action if the device is already at that channel position.

90



CAUTIONS: If stacker selection is desired and unblocked records are
being read. Each GET macro instruction must be followed by a stacker-
selection CNTRL macro instruction directed to the same device. The
CNTRL macro instruction need not immediately follow the GET macro
instruction. GET (locate mode) or GET (move mode) must be used exclu-
sively for a card reader.

If stacker selection is desired and blocked records are being read,
CNTRL should be issued only after the GET which refers to the last rec—
ord in the block.

CNTRL need not be issued for the GET which invokes EODAD.

For the printer, use of control characters does preclude use of the
CNTRL macro instruction.

If a locate mode PUT was last issued before the CNTRL, the SP or SK
CNTRL function will occur immediately following the line associated with
the PUT preceding the locate mode PUT. If a move mode PUT was last
issued before the CNTRL, the SP or SK CNTRIL function will occur immedi-
ately following the line associated with the move mode PUT.

Example: 1In the following example, the on-line printer associated with
the data control block PRINTOUT will skip to channel 7 of the carriage
control tape.

EX1 CNTRL PRINTOUT,SK,7

PRTOV_—-- Test for Printer Carriage Overflow (R)

The PRTOV macro instruction (for QSAM) is used to control the page
format for an on-line printer. The programmer can test channel 9 or 12
of the carriage control tape for an overflow condition.

1
iName ‘Operation Operand i
L 1
5 3 1
l[symbol];PRTOV dcb~ Jaddrx|{ ,number-{9] 12} | ,userrtn- [addrx |
| | | )] (0) |
L 1 4
dcb

specifies the address of the data control block opened for the
dataset being processed.

number
specifies which channel (9 or 12) is to be tested.

userrtn
specifies the address of a routine that is to be given control if
the overflow condition exists. If this operand is omitted, an
automatic skip to channel 1 will be performed when an overflow con-
dition is found.

PROGRAMMING NOTES:

Existence of an overflow condition, as indicated by the channel 9 or
12 machine indicator, is detected by the system and retained in corres-—
ponding program indicators, one for each channel. The control program
resets the appropriate program indicator only when a PRTOV macro
instruction tests that indicator. Thus, the PRTOV macro instruction
detects an overflow condition that occurred in any prior, completed
operation that was not tested. Testing occurs as follows:

Access Methods: 0SAM 91



If no user routine is specified, execution of the problem program
continues after a PRTOV macro instruction is issued. When the line
associated with the first PUT macro instruction issued after the
PRTOV is about to be printed, the appropriate program indicator is
tested.

If a user routine is specified and a move mode PUT preceded the
PRTOV, the control program WAITs after a PRTOV macro instruction is
issued. When all prior PUT operations are complete, the appropri-
ate program indicator is tested.

If a user routine is specified and a locate mode PUT was last used,
the overflow indicator will be tested to indicate the status of the
print line associated with the PUT (locate or move mode) which pre-
ceded the locate mode PUT. A locate mode PUT does not cause a line
to be printed until the next PUT oxr TRUNC.

This macro instruction causes no action, if used for a device other
than a printer. The USERRTN must have the same PSECT as the rou-
tine which issued the PRTOV. To continue processing at the point
at which the PRTOV macro instruction was issued, the USERRTN must
branch to the address which was contained in general register 14
upon entry to USERRTN, and must not issue a RETURN macro
instruction.

The contents of the general registers upon entry to the user's over-
flow routine are as follows:

Register Contents

0 Unspecified

1 Address of the data control block (DCB)

2 through 13 Those that existed before the macro instruction was
executed

14 The return address

15 The address of the exit routine

Example:

In the following example, channel 9 will be tested for an overflow con-
dition. Since the optional error routine address has been omitted, an
overflow condition will cause a skip to channel 1.

EX1 PRTOV DCBOUT, 9
SETL -- Specifies Start of Sequential Processing (R)

The SETL macro instruction (for QSAM) enables the user to position
himself at the beginning, end, previous record, or at any logical record
within a sequential data set volume.

r T L 1
| Name |Operation|Operand |
1 1 1 .'
) ¥ 1

| [symbol] | SETL | dcb- Jaddrx| ,type-code [,11imit- jaddrx|] |
| | | nm (0) |
L 1 1 4
dcb

specifies the address of the data control block opened for the data
set being processed.

92



If (1) is written, the DCB address must have been loaded into para-
meter register 1 before execution of this macro instruction.

type
specifies the starting point for processing, and any optional ser-
vices requested, as follows:

Code Starting Point

C After this instruction is executed DCBLPDQ will contain the
current retrieval address for use by a SETL type code R
instruction.

R Retrieval address specified in the llimit parameter as

obtained from DCBLPDQ in the data control block, following
a SETL type code-C.

B Beginning of data on current volume.

E End of data on current volume. On OUTPUT data sets this is
the current position.

P pPrevious logical record in volume (backspace) -

1limit
specifies the address of a field containing the retrieval address
which must be a double word oriented, 6-byte field.

If (0) is written, the address of a field containing the retrieval
address must have been loaded into parameter register 0 before
execution of this macro instruction.

only if the type code specifies R should the 1limit field be
provided.

CAUTION: A SETL issued for a data set or opened foxr UPDAT must be fol-
lowed by a GET locate mode macro instruction before a PUTX can be
issued.

If a SETL with type E code is given for magnetic tape, subsequent use
of a SETL with type C or R codes will be invalid.

If SETL is used, the user must specify the SETL options in the MACRF
field of the data control block.

If type contains a P, a SETL issued for a direct access volume with
track overflow specified in the DCB causes no action to be taken.

If type contains R, a SETIL cannot be issued for an unlabeled magnetic

tape volume which was OPEN'ed for RDBACK or if MOD was specified.

The retrieval address obtained from the DCBLPDQ field cannot be
altered before it is furnished to the SETL routine in the llimit para-
meter. SETL type code C must be issued just before the retrieval
address in DCBLPDQ is saved for use by a subsequent SETL type code R.

The execution of a SETL macro instruction on a direct access device
results in an error if a volume cannot be properly repositioned or if
the DCBLPDQ is invalid. These errors cause the SETL to pass control to
SYNAD.

If repositioning errors occur jn the execution of a SETL on a magnet-
ic tape, control passes ijmmediately to SYNAD.

Access Methods: QSAM 93



PROGRAMMING NOTES: The DCBLPDQ field is six bytes in length and pro-
vides the relative address in the volume of the last logical record pro-
cessed by QSAM. The DCBLPDQ should not be altered by the user and is
used when R is specified in the type-code operand. The end of the data
set OPEN'ed for OUTPUT is the current address. If E is specified in the
type-code operand for an output data set, a SETIL will position the user
to his current address. If R is specified, the limit parameter (DCBLPDQ
saved) cannot exceed the address of the last PUT.

EXAMPLE:
OPEN INDCB, INPUT
GET INDCB (1st logical record)
GET INDCB (2nd logical record)

Save DCBLPDQ in RETAIN

GET INDCB (3rd logical record)
GET INDCB (nth logical record)
SETL INDCB, R, RETAIN

GET INDCB (2nd logical record)
GET INDCB (last record of volume)
CLOSE INDCB

In the above example, the first GET after the SETL macro instruction
will furnish the 2nd logical record. If B had been specified in the
type-code opexrand, the 1st logical record would have positioned the user
to the address of the logical record just beyond the last record of this
data set stored on the volume. The next GET would have caused EODAD to
be given control if current volume is the last in the data set. If not
the last volume, the first record of the next volume is provided. If
type contained a P, the nth logical record (previous logical record)
would have been furnished by the next GET. (If E, B, C, or P is Speci-
fied in the type operand, the 1llimit parameter is ignored).

9y



INPUT OUTPUT REQUEST FACILITY

The input/output request facility (IOREQ) consists of the TSS5/360
data set management facilities provided for users who would rather pro-
gram their own I/0O device control routines than employ those from the
VAM or SAM access methods. It provides a means to control I/O devices
through user specification of channel command words (CCWs) that are
normally created by the TSS/360 supplied access methods. Using IOREQ,
the user can create a series of these channel instructions and execute
them as he desires. The TSS/360 macro instructions IOREQ, CHECK, and
VCCW, have been provided to users who desire to, in effect, create their
own specialized access methods.

As with TSS/360 access methods, before the IOREQ facilities can be
nsed to access a data set, the data set must be described and connected
to the system by previous user (or system) issuance of the DCB, DDEF,
and OPEN macro instructions and/or DDEF command, and, when he has
finished accessing the data set, he must disconnect the data set from
the system via a CLOSE macro instruction.

IOREQ causes a request for the input/output operations specified by a
user coded VCCW or a string of VCCW macro instructions to be
recorded in a control block (DECB) and placed on an input/output
request queue. Control is then returned to the user's program;
the request is subsequently executed by the system when the
device is available.

CHECK checks the queue of control blocks (DECBs), containing the
requests for one, or many, input/output operatiomns, to determine
if these requests have been satisfied; if completed satisfactori-
ly, control is returned to the next sequential instruction fol-
lowing the check macro instruction. It also indicates whether
errors or exceptional conditions have occurred while attempting
to satisfy the request.

VCCW generates a double word channel command word (i.e., CCW) contain-
ing all the information needed by the channel to execute the
requested input/output activity. The desired I/0 activity can
then be initialized by the IOREQ macro instruction.

A detailed explanation of the above macro instructions and the format
in which they may be specified are shown below. Further information
pertaining to the input/output request facility and user handling of I/0
operations can be found in IBM System/360 Time Sharing System: Assembl-
er Programmer's Guide, Form C-28-2032.

IOREQ -- Request an Input/Output Operation (S)

The IOREQ macro instruction (for the IOREQ facility) initiates an
input/output operation which is specified by a virtual channel command
word (VCCW). See the VCCW macro instruction in this section.

After an IOREQ macro instruction is issued, control returns to the
problem program before the I/O operation is completed. The CHECK macro
instruction must be used to ensure the completion of the I/0 operation.

r |
| Name Operation|Operand |
L

b 1
| [symbol] | IOREQ decb-symbol, type- {N|B} ,dcb-addr,vccw-addr, |
| | | length-value,sio-value |
L i 1 ]

Access Methods: IOREQ 95



decb
specifies the name to be assigned to the data event control block
(DECB) built by the macro expansion.

type
specifies either:
N nonbuffered I/0 operation
B buffered I/0 operation
dcb
specifies the address of the data control block opened for this
IOREQ.
vcew
specifies the address of a list of virtual channel command words
built by the VCCW macro instruction.
length
specifies the number of VCCWs in the VCCW list to be issued.
sio

specifies the number of the VCCW in the 1list which is to be
executed first.

PROGRAMMING NOTES: The IOREQ macro instruction builds a data event con-
trol block (DECB) which is addressed by the symbol coded for the decb
operand.

The format of the DECB is:

r T T 1
|Offset from}Size in| |
|DECB-symbol |Bytes |Field [
; + : 1
| +0 | 1 |Event Control Block (ECB) |
| +1 | 3 |Reserved by the system (user must not alter) |
| +Yy | 2 |Type field (buffered or nonbuffered IOREQ) |
| +6 | 2 |Length field (for buffered only) |
} +8 | 4 | DCB address |
| +12 | 4 |Data area address (for buffered only) |
| +16 | 4 |Pointer to status indicators |
| +20 | 4 |VCCW list address |
| +21 | 2 |[Used by the system (user must not alter) |
| +26 | 1 |Sense byte 0 |
| +27 | 1 |Sense byte 1 |
| +28 | 1 |VCCW l1list length in doublewords |
| +29 | 1 |Offset from VCCW list in doublewords to start VCCW|
| +30 | 2 |Reserved by the system (user must not alter) |
| +32 | 8 |[Modified channel status word?' (CSW) |
| +40 | 8 |Sense bytes (1-8) |
b L ' {
|TModified CSW differs only from CSW in that the first word contains |
| the 32-bit address of the instruction causing unit check or unit |
| exception. |
L 3

The DECB used for IOREQ must not be altered until the operation has
been checked.

If buffering is specified, the buffer built for read request VCCWs
may have overlapping data areas. However, the complete buffer area
needed for all the read request VCCWs must form a contiquous area. For
write request VCCWs, unique buffer space is allocated for each VCCW
regardless of whether the areas used by the VCCWs have overlapping por-

96



tions. Consequently, write request VCCWs do not have to form contiguous
dreas.

For buffered VCCW write requests: the contents of the given data
address are used, when the IOREQ macro instruction is issued even if
these contents will be changed by a read request in the VCCW.

Each IOREQ macro instruction, which causes an input/output request to
be executed, accomplishes this request by building an IORCB. IORCBs are
executed separately by the system unless they are "chained." Chaining
IORCBs saves time if a following IORCB arrives in the system before the
previous IORCBs commands are completed.

If chaining to the next IORCB is desired, the last instruction to be
executed must be the last in the user's VCCW list and must have the IOC
flag set. (This instruction is usually a NOP.) Chaining of IORCBs is
accomplished by changing the last CCW in a command list to a TIC to the
start command in the next IORCB. This start CCW cannot be a TIC, and
must be executable only once. IORCB chaining is allowed only between
IORCBs on the same device. When chaining is requested, it is still
necessary to check each IOREQ result by using the CHECK macro instruc-
tion. When execution of the IOREQ macro instruction is completed,
register 15 contains a return code in its low-order byte.

Return Code (decimal) Significance
0 I/0 initiated
1} The NCP value in the data control block is

exceeded; (I/0 not initiated) or DECB
"active", or DECB in "wait" state.

8 I/0 not initiated. The VCCW list contains
an error. One of the first eight rules for
forming VCCW lists has been violated (refer
to the IOREQ: VCCW macro instruction) .

12 I/0 not initiated. The area needed for
IOREQ is too large. Reduce or change VCCW
list.

L- AND E-FORM USE: The L-form macro instruction results in a macro
expansion consisting of only a parameter list. The E-form results in a
macro expansion only consisting of executable instructions. The E-form
macro instruction uses the DECB built for it by the L-form macro
instruction.

If the E-form is used, either a DECB addrx or (1) must be specified;
if (1) is written, the address of a DECB must be loaded into register 1
before execution of this macro instruction. Any E-form parameter over-
rides the corresponding parameter in the L-form. If a parameter is not
specified in the L-form, it must be specified in the E-form. Required
parameters for the L- and E-forms are:

T a T 1
| Operand | L-Foxrm | E-Form |
[l 1 [ J
T B} ] L)
| decb | decb-symbol | decb- |addrx |
i | | M |
i MF | MF=I, | MF=E |
L 1 1 J

Access Methods: IOREQ 97



CHECK -- Wait for and Test Completion of an I/0 Request (R)

The CHECK macro instruction (for IOREQ facility) waits, if necessary,
for the completion of an I/0 request and detects errors and exceptional
conditions. If the I/O operation is successful, the program resumes
execution at the instruction after the CHECK macro instruction.

The CHECK macro instruction must be used to test for the completion
of every IOREQ executed. A DECB furnished in an IOREQ must not be
altered by the user until a CHECK has been issued for this DECB.

r T T 1
| Name | Operation|Operand |
L il [ 3
r T T 1
| {symbol] |CHECK | decb- jaddrx |
| | I m |
] 4 i 1
decb

specifies the address of the DECB furnished in the IOREQ macro
instruction that is being checked.

If (1) is furnished as the operand, the address of the DECB must
have been loaded into general register 1 before the CHECK macro
instruction is used.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CHECK macro instructions must be issued in the
same order in which the associated IOREQ macro instructions were issued.

If an IOREQ results in a unit check or unit exception, the CHECK of
the DECB associated with this IOREQ causes control to be given to the
user's SYNAD routine specified in his data control block. If a linkage
to SYNAD is executed by CHECK, all outstanding IOREQs are purged from
the system. In the user-provided SYNAD routine, the user may reference
the DEC field of the data control block to facilitate reissuing any of
the purged IOREQs., A RETURN may be issued in a SYNAD routine that
causes control to be returned to the next sequential instruction follow-
ing the CHECK macro instruction that invoked the SYNAD routine.

Upon entry to the SYNAD routine, general register 1 contains the
address of the DECB associated with the IOREQ involved.

When a subsequent IOREQ is executed after the SYNAD routine is
invoked, the contents of the area pointed to by DCBDEC in the data con-
trol block may be changed.

If the DCBDEVD field is zero or defaulted, any unit check or unit
exception causes the CHECK of the appropriate DECB to invoke SYNAD.

VCCW —-- Define a Virtual Channel Command Word (O)

The VCCW macro instruction (for IOREQ facility) generates a double-
word, the virtual channel command word, that contains the proper infor-
mation to inform the IOREQ macro instruction of the I/0 activity
requested.

98



r T T 1
| Name | Operation|Operand i
F 1 t i
I | | code |
| [symbol] | VCCW | command- , data-relexp,count-absexp |
] I | absexp |
| | | |
| | | [,£1lag- ({CD|CC|NCC|SCC|IOC}, [SIL], [SKP])] |
L i L J

command

an absolute expression that specifies the hexadecimal command code.
This expression's value is right justified in byte 1 of the VCCW
doubleword.

The command codes, shown below, may also be supplied as a code
operand. The apostrophes are part of the code and must be written
if the code form of the operand is supplied.

Code Furnished Hexadecimal Command
in Macro Instruction Code Provided
*WRITE"' 01

*READ’' 02

*NOP" 03

'*SENSE" 04

"TIC* 08

‘READBK" ocC

data

specifies the data address of the VCCW to be generated (one word) .

count

specifies the count of the VCCW to be generated (two bytes).

flag

specifies which flags are to be set in the VCCW to be generated

cb -
cc -
ScC -
IoC -
NCC

SIL
SKP

Chain Data flag

Chain Command flag

Software Command Chaining flag

IORCB Chaining flag

Indicates No Command Chaining (Command chaining is default
condition)

Suppress Length Indicator flag

Skip flag

PROGRAMMING NOTES: A virtual channel command word (VCCW) is a double-
word located on a doubleword boundary with this format:

Byte 0 — channel command
Byte 1 - flag byte

Bit 0 CD Chain Data flag

Bytes

CC Chain Command flag

SIL Suppress Length Indicator flag
SKP Skip flag

SCC Software Command Chaining flag?
I0C IORCB Chaining flag?2

Reserved

Reserved

NOoUmEWN =

2-3 binary count field of instruction

Bytes 4-7 address in virtual storage

Access Methods: IOREQ 99



1Software command chaining causes channel end and device end associated
with a command to invoke the execution of the next sequential command.
2See "Programming Notes," under "IOREQ."

A list of VCCWs generated by use of the VCCW macro instruction may be
used to inform the IOREQ macro instruction what I/0O activity is
requested.

Restrictions: The list of VCCWs must conform to the following rules:

1.

10.

If any VCCW in the VCCW list has the SCC flag set,

a. The last instruction to be executed must be the last instruc-
tion in the VCCW list. This is accomplished by having this
instruction the only instruction in the list other than a TIC
which does not have a CD, CC, or SCC flag set.

b. The last instruction in the list must not be a TIC.

C. Only the last instruction may have the IOC flag set.

If no VCCW in the VCCW list has the SCC flag set,

a. An instruction executed in the VCCW list, other than a TIC,
that does not have the CD or CC flag set is the last instruc-

tion executed.

b. The last instruction in the list may have the IOC flag set only
if it is the last instruction in the list to be executed.

The last instruction in the VCCW list must not have the CD, CC, or
SCC flag set.

If a VCCW has the CD flag set, the following VCCW must have the
same command code or be a TIC.

If a VCCW has the CD flag set and the following VCCW is a TIC, the
TIC address must point to a VCCW with the same command code as the
VCCW preceding the TIC.

No VCCW may have a count field of 0 unless it is a TIC.

The address of a VCCW incremented by the VCCW count field must not
Cross a page boundary.

The entire VCCW list must not refer to more than eight different
pages of storage.

The VCCW list requests the supervisor to allocate space for execut-
ing a particular VCCW when an IOREQ macro instruction is issued.

a. In the buffered IOREQ, all commands and data must be contained
in one IORCB.

b. In the nonbuffered IOREQ, all commands and page lists must be
contained in the IORCB.

When IORCB chaining is requested, the IOC flag must be set on the
last VCCW of the list (generally a NOP) . This command must be the
last command in the list to be executed.

If there is a question as to whether a VCCW list requires too large

an area, an IOREQ macro instruction may be executed and the return code
tested.

100



MANTPULATING ENTIRE DATA SETS

Entire data sets (rather than individual records within a data set)
can be manipulated and transferred from one storage device to another.
A data set can be moved from one direct access device to another, or
simply to a different virtual storage area on the same direct access
device. They can also be transferred from virtual storage to punched
cards, printer listings, or magnetic tape devices. Several macro
instructions are provided with TSS/360 data set management facilities
for performing these operations. These macro instructions fall into two
groups; Copying Data Sets, and Bulk O/P facilities; these groups and
their related macro instructions are briefly summarized below.

COPYING DATA SETS

A user might decide to include an existing data set in a partitioned
data set, to renumber the lines of an existing line data set, or to
merely store an existing data set on a different device type, thereby,
freeing or releasing the device on which the existing data set is
stored. The functions of the CDS macro instruction, that has been pro-
vided with the TSS/360 data set management facilities to aid a user in
accomplishing this type of operation, are summarized briefly below.

CDS creates copies of existing data sets or members of partitioned
data sets that have been previously defined to the system and
reside on direct access or magnetic tape volumes. It also
creates copies of line data sets with renumbered lines. The copy
is placed into a new data set. Both the new data set and the
existing old data set must be previously defined to the system
via issuance of the DCB macro instruction and the DDEF macro
instruction (or command) . The old data set does not, however,
have to be opened by the user. It is opened automatically by the
CDS routine.

A detailed explanation of the above macro instruction and the format
in which it may be specified is shown below. Further information per-
taining to the manipulation of an existing data set and the CDS macro
instruction can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C-28-2032.

CDS —-- Copy Existing Data Set (9)

The CDS macro instruction copies a data set or a member of a parti-
tioned data set. In addition, it may renumber the lines of a line data
set. The resulting new data set is assigned the data set name furnished
(as an operand) by the user. A copy of a member may be specified either
as a new member of a partitioned data set, or as a new data set by
itself. A virtual storage data set may be copied as a member of a par-
titioned data set.

Ll T
Name | Operation|Operand
(|

L
+

—
(a3
%
(+

Ll
I
[l
|
| [symbol] |CDS |oplist—-
| |

L

e e e e e e

L

Manipulating Entire Data Sets: Copy Data Set 101



oplist
specifies the list of operands. They are:

Oplist

dsname,—symbol,dsnamez-symbol[,E][,[1ine°integer][,increment-integer]]

[ g . oy

|
|
4
1
|
3

dsname,
specifies the data set name of the data set being copied. It must
be cataloged or have been defined in a DDEF macro instruction or
command.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, a member of a partitioned data set, or a
nonpartitioned generation of a generation data group (identified by
absolute generation name or relative generation number) .

dsname,
specifies the data set name assigned to the copy of the data set.
It must have been defined in a DDEF macro instruction or command
unless a member of a cataloged partitioned data set is specified.

This operand can be specified as the fully qualified name of: a
nonpartitioned data set, a member of a partitioned data set, or a
nonpartitioned generation of a generation data group (identified by
absolute generation name or relative generation number) .

specifies that the original data set or data set member is to be
erased after being copied. E applies only to data sets on direct-
access devices. If a shared data set is to be copied and then
erased, unlimited access to the data set must have been permitted.

line
specifies the starting line number of the data set copy if it is a
line data set and renumbering is desired. The number consists of
three to seven digits, the last two of which should be zero. An
all-zero starting line number is invalid.

Default: If increment is also defaulted, line numbering is not
performed. If increment is not defaulted, the starting line number
of the copy data set will be 100.

increment
specifies the value by which line numbers in the data set copy (if
it is a line data set) are to be incremented when renumbering is
desired. It consists of three to seven digits, the last two of
which should be 0. An all-zero increment is invalid.

Default: If the starting line number is also defaulted, line numb-
ering is not performed. If the starting line number is not
defaulted, an increment of 100 is assumed.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction) , the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The CDS macro instruction is restricted to data sets
on direct-access or magnetic-tape volumes. Data set organization is not
altered by the use of a CDS macro instruction. The dsname, and dsname,
data sets must be defined with the same data set organization and record
format. For example, the copy of a physical sequential data set has

102



physical sequential organization, even though the device type may be
changed. A VISAM data set can be copied as VSAM and vice versa.

The user may specify a VISAM organization in the CDS macro instruc-
tion for a data set copy even though the original data set organization
is VSAM. 1In this case, each record of the original data set must con-
tain a key. In addition, the user should define -- in the DDEF macro
instruction or command for the data set copy —- the key length (KEYLEN),
padding (PAD) , and record key displacement (RKP) values. If he does not
provide these values, no copy is made.

An entire partitioned data set cannot be copied with one CDS macro
instruction. Each member must be copied individually. A separate macro
instruction, specifying the data set name and member name, must be
issued for each member.

This macro instruction cannot be used to copy program modules because
program modules have format-U (undefined) records.

The user can copy only those data sets that belong to him or those to
which he has been given access.

At completion of execution of the CDS macro instruction, the low-
order byte of register 15 contains one of the following codes:

Code
(Hexadecimal) Significance

00 Normal

ou Invalid input parameters

08 Name of original data set not in catalog or task defini-
tion table (TDT)

oC Data set not in catalog and no DDEF macro instruction or
command has been executed for it

10 JFCB for original data set not consistent with JFCB for
new data set

14 Membexr name not given for partitioned data set

18 User does not have write access for new data set

1cC Original data set not VAM or SAM

20 Data set not on direct-access; command ignored

24 New data set member name already exists in POD

28 Data set copied. 0l1d data set not erased; user does not
have proper access

2C Data set copied. New data set not renumbered; not a line
data set

30 Data set copied and renumbered. O©01d data set not erased;
user does not have proper access

34 Data set copied and original erased. New data set not
renumbered; not a line data set

38 Data set copied; new data set not renumbered, and old

data set not erased

1~ AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: IN EX1, THE OPLIST IS PRESENTED AS A CHARACTER STRING. In
EX2, an address designates the oplist.

EX1 CDS 'DATASET,U"
EX2 CDS OPLISTC

Manipulating Entire Data Sets: Copy Data Set 103



BULK OUTPUT FACILITIES

The bulk output facilities allow a user to transfer entire data sets
from virtual storage to punched cards, printer listings, or magnetic
tape devices (for off-line printing). These facilities provide a user
with three macro instructions, the print (PR}, punch (PU), and write
tape (WT) macro instructions, which enable him to accomplish these tran-
sfers. These macro instructions are to be issued in a user program on
closed SAM, VSAM, and VISAM data sets only. Although VPAM data sets or
members cannot employ these macro instructions, the members of the VPAM
data set could first be copied with a CDS macro instruction (or command)
into new VSAM of VISAM data sets and then be operated on by these macro
instructions. Execution of these macro instructions cause requests for
particular output operations to be set up as independent nonconversa-
tional tasks, places the requested task on a bulk output queue, and
returns to the user's problem program. The user can then continue pro-
cessing other data sets (and could even terminate) while the output task
waits to be, or is being, executed. The bulk output macro instructions
are briefly described below.

PR causes a specified data set to be listed on a high speed on-line
printer and optionally erases it from the user's catalog when the
printing has been finished. Line spacing on the printed output
can also be indicated by the user. The print operation takes
place as an independent nonconversatioal task.

PU causes a specified data set to be listed on a high speed on-line
punch and optionally erases it from the user's catalog when the
punching is finished. Stacker selection can also be indicated by
the user. The punch operation takes place as an independent non-
conversational task.

WT writes a specified data set on magnetic tape in proper format for
subsequent off-line printing and optionally erases it from the
user's catalog when the writing is finished. The write tape
operation takes place as an independent nonconversational task.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to bulk output facilities and the related macro
instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

PR -- Print a Data Set (S)

The PR macro instruction causes the specified data set to be listed
in nonconversational mode on a high-speed line printer and, optionally,
erases it from the catalog when printing is finished. The specified
data set is printed as it stands, with no code conversions; i.e., the
data set must be in EBCDIC character codes so proper printer graphics
will be used in printing. If the data set resides on a seven-track
tape, any character adjustments required to ensure data validity are
made by the system.

f L) T 1
| Name | Operation|Operand |
; : ¢ i
| | | text ]
{ {[symbol} | PR |oplist- |
| | | addr |
L 1 L E]




oplist
specifies the list of operands supplied for the PR macro
instruction:

Oplist

dsname-name, [startno-integer] , [endno-integer] ,

EDIT
spacing-) j1
2), (H , [lines-integer] , [P]
3

ACCEPT
+ [ERASE] , [error—{ SKIP ] [, form-specsym]
END

(P S s o — " —— —— —— S a— oy

| S U S PV S VTSI W S S SpR—

dsname

specifies the name of the data set to be printed. The data set
name either must have been previously defined by a DDEF command or
macro instruction, or the dsname must be in the catalog.

This operand can be specified as the fully qualified name of a non-
partitioned data set or of a nonpartitioned generation of a genera-
tion data group (identified by absolute generation name or relative
generation number) .

startno

specifies the byte number at which printing is to start for each
data set record. The number consists of one to six decimal digits.
If this operand is not specified, printing starts with the first
byte of each record.

endno

specifies the byte number at which printing is to stop for each
data set record. This end byte is printed. If this operand is not
specified, printing continues to the last byte of each logical rec-
ord or until the printer line length is reached, whichever occurs
first.

spacing

specifies the number of lines to be skipped.

EDIT
indicates that the line spacing is controlled by a control
character in the first byte position of each data set logical
record. This control character is programmer-supplied and may be
in USASI (USASCII) or machine code, but must be in the same code
throughout the data set. (Refer to Appendix D.)

Note: TIf EDIT is selected, the line skipping, header, lines per
page, and page numbering options cannot be specified in this macro
instruction.

1 - indicates skip 1 line
2 - indicates skip 2 lines
3 - indicates skip 3 lines

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the first record, whichever is smaller, will be used as the
header.

Manipulating Entire Data Sets: Bulk Output 105



lines
specifies the number of lines to be printed on a page. The number
of lines is specified as a one-to-four digit decimal number. The
maximum number of lines per page is determined by the printer form
being used. If not specified, 54 lines are printed on each page.

P
specifies that page numbering is to be performed. If P is not spe-
cified, page numbering is not performed.
ERASE
specifies that the cataloged data set is to be erased from the
catalog after the print operation is finished. If the data set is
shared and is currently being used by another user a diagnostic
will be issued and the erase will be ignored.
error
specifies the action to be taken if an uncorrectable error is
encountered while reading a data set record. This option applies
only if the data set to be printed is on tape. The options are:
ACCEPT - the error record is accepted.
SKIP - the error record is skipped.
END - the print operation is terminated.
form

specifies the form number of the printer paper to be used. It con-
sists of one to six characters. The installation's standard print-
er form, defined at system generation time, is used if this operand
is not specified.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The PR macro instruction processes data sets that
were created by using the basic sequential, queued sequential, virtual
sequential, or virtual index sequential access method. The Jdata set
name may or may not be in the catalog. If not, it is placed in the
catalog until printing is completed and is then erased. If the data set
name is in the catalog, the ERASE option can be used to erase the data
set after printing is completed. A basic sequential or queued sequen-
tial data set must reside on magnetic tape. A virtual sequential or
virtual index sequential data set must not contain format-U records.

If the data set to be printed was created via the DATA command, the
first byte of each record contains an indicator for the origin of the
record. Unless the startno operand is specified, this byte is printed
as part of the record upon issuance of the PR macro instruction. 1In
such a case, if the record was originally entered through a card reader,
the indicator byte will be printed as a C. If it was entered through a
terminal, the byte will be printed as a blank character. When the star-
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is not included as part of the printed record.

Invalid print characters appear as blanks in the output. If a read
error occurs, the data set record causing the read error is output in
hexadecimal on the SYSOUT data set regardless of the error option, if
any, selected by the user.

At completion of execution of the PR macro imstruction, register 1
contains the address of the batch sequence number assigned to the non-
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the following codes:

106



Code Significance
0 PR request was accepted.

All other codes Register 15 contains a two-byte message number.
These messages are described under "Prompting
Messages" and "Diagnostic Messages" in Command
Language User's Guide.

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. In
EX2, a symbolic address designates the oplist.

EX1 PR ‘DSNAME1,02,120,1"
EX2 PR LSTTAG

Since EX2 specifies an address, the user has provided the oplist str-

ing at location LSTTAG. When the macro instruction is executed, the
necessary alphameric characters must be available in the string.

PU -- Punch a Data Set (S)

The PU macro instruction causes a specified data set to be punched
onto cards in nonconversational mode on a high-speed punch and, option-
ally, to be erased from the catalog when punching is finished. Any con-
tiguous field of up to 80 bytes can be punched from each input record of
an EBCDIC data set. The specified data set is punched as it stands,
with no code conversions.

Note: Up to 160 bytes per card can be punched in a special column
binary format, where bits 0 and 1 of each byte are ignored.

L} L] b
| Name |Operation|Operand |
L [
] T {
| [symbol]} | PU oplist-|text |
| | | addr |
L L L d
oplist
specifies the list of operands supplied for the PU macro
instruction:
hj
Oplist ]
| Y|
|dsname-name, [BINARY] [startno-integer], [endno-integer], [select-/ 2 1,1
| 3 |
| DI [
| I
| [ERASE] [,form-specsym] |
L i |

dsname
specifies the name of the data set to be punched. The data set
name either must be previously defined by a DDEF macro instruction
or command, or must be in the catalog.

Manipulating Entire Data Sets: Bulk Output 107



This operand can be specified as the fully qualified name of a non-
partitioned data set or of a nonpartitioned generation of a genera-
tion data group (identified by absolute generation name or relative
generation number) .

BINARY
specifies punching in column binary format. If not specified,
punching is in EBCDIC format.

startno
specifies the byte number at which punching is to start for each
data set record.

If this operand is not specified, punching starts with the first
byte of each record.

endno
specifies the byte number at which punching is to stop for each
data set record. This end byte is punched. If this operand is not
specified, punching continues to byte 80 {(or, in binary, to byte
160) or to the end of the record, whichever occurs first.

select
specifies the stacker select or edit option:

1 - indicates pocket number P1
2 - indicates pocket number P2
3 - indicates pocket number P3

EDIT - indicates that the first byte of each data set logical rec-
ord contains a control character for stacker selection. This con-
trol character is user-supplied and may be in USASI (USASCII) or
machine code, but must be in the same code throughout the data
set. (See Appendix D.)

ERASE
specifies that the cataloged data set is to be erased from the
catalog after the punch operation is finished. If the data set is
shared and is currently being used by another user, when this
option is processed, a diagnostic will be issued and the erase will
be ignored. If ERASE is not specified, no erasure is made.

form
specifies the card form number of the cards to be used for punch-
ing. The form number may have one to eight characters. If this
operand is not specified, the installation's standard card, as
established at system generation, is used.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The PU macro instruction processes data sets that
were created by using either the virtual sequential or virtual index
sequential access method. The data set name may or may not be in the
catalog. If not, it is placed in the catalog until punching is com-
pleted and is then erased. If the data set name is in the catalog, the
ERASE option can be used to erase the data set after punching is
completed.

If a data set to be punched was created via the DATA command, the
first byte of each record contains an indicator for the origim of the
record. Unless the startno operand is specified, this byte is punched
as part of the record upon issuance of the PU macro instruction. 1In

108



such a case, if the record was originally entered through a card reader,
the indicator byte will be punched as a C. If it was entered through a

terminal, the byte will be punched as a blank character. When the star-
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is’ not included as part of the punched record.

Since the READ CARDS command prefixes a line number automatically to
each record of a VISAM data set read from cards, any VISAM data set that
is to be read from cards should not contain line numbers. Therefore, if
an existing VISAM line data set is to be punched on cards and later
recreated by reading those cards with a READ CARDS command, the user
should be careful to punch out the stored VISAM data set without includ-
ing line numbers.

Invalid characters appear as blanks when EBCDIC records are punched.
If a read error occurs, the record in question is not punched, but is
written in hexadecimal on SYSOUT.

At completion of execution of the PU macro instruction, register 1
contains the address of the batch sequence number assigned to the non-
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the following codes:

Code Significance
0 PU request was accepted.
All other codes Register 15 contains a two-byte message number.

These message numbers are described under
“prompting Messages®™ and "Diagnostic Messages”
in Command System User's Guide.

1- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. 1In
EX2, a symbolic address designates the oplist.

EX1 PU 'DSNAM2,,020, 99,,ERASE'
EX2 PU CDTAG

Since EX2 specifies an address, the user has provided the oplist str-
ing at location CDTAG. When the macro instruction is executed, the
necessay alphameric characters must be available in the string.

WT -- Write a Data Set on Tape for Off-Line Printing (S)

The WT macro instruction edits and writes the specified data set on
magnetic tape in nonconversational mode for subsequent off-1ine printing
and, optionally, erases it from the catalog when writing is finished.
The output is written on 9-track tape in odd parity with standard
System/360 labels. Each input data set record is written as a logical
record, or print line, on tape in proper format for off-line printing;
records are blocked, if requested. The maximum blocked record length is
32,767 bytes.

Manipulating Entire Data Sets: Bulk Output 109



r T T 1
| Name | Operation|Operand |
L } 1
| 1 T "
| [symbol] |WT |oplist-text |
| | | addr |
L L L J
oplist
specifies the list of operands supplied for the WT command. They
are:
r 1
] Oplist |
1 J
r 1
|dsname,-name, dsname,-name ¢« [Volume-alphnum] , [factor-integer], |
I I
| [startno-integer], [endno-integer] |
| EDIT ]
| {1 o |
| |+ spacing-\(2), {H], [(Lines-integer], [P] [, ERASE] |
3

! !

dsname,
specifies the name of the data set to be written on tape in print
format. The data set name either must be previously defined by a
DDEF macro instruction or command, or must be in the catalog.
This operand can be specified as the fully qualified name of a non-
partitioned data set or a nonpartitioned generation of a generation
data group (identified by absolute generation name or relative
generation number) .

dsname,
specifies the data set name under which the data set is to be. cata-—
loged as it resides on the output tape. The user must specify
dsname, or the task may be abended.
This operand can be specified as the fully qualified name of a non-
partitioned data set or a nonpartitioned generation of a generation
data group (identified by absolute generation name or relative
generation number) .

volume
specifies the volume ID number of the output tape. The ID number
consists of one to six alphameric characters. If volume is not
specified, a scratch tape is used.

factor
specifies the blocking factor of the output tape. The factor con-
sists of one to three decimal digits; the maximum blocking factor
permitted is 246. If the blocking factor is not specified, a
blocking factor of 30 is assumed.

startno
specifies the byte number at which tape writing is to start for
each data set logical record. The number consists of one to six
decimal digits. If the operand is not specified, writing starts
with the first byte of each record.

endno

specifies the byte number at which printing is to stop for each
data set record. This end byte is written. If this operand is not



specified, writing continues to the last byte of each logical reco-
rd or until the printer line length is reached, whichever occurs
first.

spacing
specifies the number of lines to be skipped.

EDIT - indicates that the line spacing is controlled by a control
character in the first byte position of each data set logical
record. This control character is user-supplied and may be in ASA
(USASCII-II) or machine code, but must be in the same code throu-
ghout the data set (Refer to Appendix D.)

1 - indicates skip 1 line
2 - indicates skip 2 lines
3 - indicates skip 3 lines

specifies that the first logical record of the data set is to be
repeated on each print page as a header line. The first 132 bytes
or the first record, whichever is smaller, will be used as the
header.

lines
specifies the number of lines to be printed on a page. The number
of lines is specified as a one-to-four digit decimal number. The
maximum number of lines per page is determined by the printer form
used for the off-line printing of the data set. If not specified,
54 lines are printed on each page.

specifies that page numbering is to be performed. If P is not spe-
cified, no page numbering is performed.

ERASE
specifies that the cataloged data set is to be erased from the
catalog after the tape-writing operation is finished. If the data
set is shared and is currently being used by another user, a diag-
nostic will be issued and the erase will be ignored. If ERASE is
not specified, no erasure is made.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

PROGRAMMING NOTES: The WT macro instruction processes input data sets
that were created by using either the virtual sequential or virtual
index sequential access method. The tape data set is created by using
the basic sequential access method. This output tape is written in odd
parity with standard Time Sharing System/360 labels. If the input data
set is not in the catalog, it is placed in the catalog until writing is
completed and is then erased. If the data set name is in the catalog,
the ERASE option can be used to erase the data set after writing is
completed.

If a data set to be written on tape was created via the DATA command,
the first byte of each record contains an indicator for the origin of
the record. Unless the startno operand is specified, this byte is writ-
ten as part of the record upon issuance of the WT macro instruction. In
such a case, if the record was originally entered through a card reader,
the indicator byte will be written as a C. If it was entered through a
terminal, the byte will be written as a blank character. When the star-
tno operand is specified as 2 or greater, the indicator byte is bypassed
and is not included as part of the written record.

Manipulating Entire Data Sets: Bulk Output 111



No more than one print line can be written from a single data set
record. If a read error occurs, the record in question is written in
hexadecimal form on SYSOUT.

At completion of execution of the WT macro instruction, register 1
contains the address of the batch sequence number assigned to the non-
conversational task established by this macro instruction; the low-order
byte of register 15 contains one of the codes given below.

Code Significance
0 WT request was accepted.
All other codes Register 15 contains a two byte message number.

These message numbers are described under
"Prompting Messages" and "Diagnostic Messages"
in Command Language User's Guide.

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. 1In
EX2, a symbolic address designates the oplist.

EX1 WT *OLDNAME , NEWNAME '
EX2 WT TAPTAG

Since EX2 is given an address, the user has provided the oplist str-

ing at location TAPTAG. When the macro instruction is executed, the
necessary alphameric characters must be available in the string.

112



CATALOG DATA SET ATTRIBUTES

Once the attributes of a data set have been described to the system
via user (or system) issuance of the DCB macro instruction, the DDEF
‘macro instruction (or command) , or any of the other available sources
for attributes, certain attributes in the data set description should be
stored within the system so that it can subsequently be located by using
only its name. The CAT macro instruction has been provided with the
TSS/360 data management facilities for recording such attributes in a
user's catalog.

Such attributes are automatically cataloged at the initial DDEF time
by the system for all public VAM data sets; however, for private data
sets, the user must request that such attributes be recorded in the
catalog by issuing a CAT macro instruction. Catalog entries for both
public and private data sets can also be altered by issuing CAT. These
entries can be subsequently deleted from a user catalog by issuing a
delete (DEL) macro instruction. The CAT and DEL macro instructions are
briefly described below.

CAT record specific data set attributes as catalog entries for all
private data sets, groups of data sets, all geunerations of a
generation data group, and for partially qualified names (all
data sets with the same partial name) . It also alters calalog
entries of both public and private data sets and recatalogs,
expanding and contracting multivolume SAM data scts.

DEL deletes one or more catalog entries for a data set or group of
data sets from the user catalog. For generation data groups,
entries for all generations are deleted; for partially qualified
data sets names, all catalog entries with the same initial name
component are deleted.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to cataloging data set attributes and its related
wacro instructions can be found in IBM System/360 Time Sharing System:
Assembler Programmer's Guide, Form C28-2032.

CAT —-- Create or Change Catalog Entry (S)

The CAT macro instruction can create catalog entries for all private
data sets (i.e., all public VAM data sets are immediately cataloged at
initial DDEF time by the system) or it can be used to create a catalog
index for a generation data group or to catalog a data set as a new
generation of an existing generation data group. The CAT macro instruc-
tion can also be employed to alter the catalog entry for both private
and public data sets (i.e., to rename a data set, or to change the
access qualification, etc.) or to recatalog expanding and contracting
multivolume SAM data sets.

r 1 E) 1
| Name | Operation|Operand |
+ 1 1
| | text |
[symbol] | CAT |oplist- |
| | addr i
A L 4
oplist

specifies the list of operands. They are:

Cataloging Data Set Attributes 113



r
| Oplist

I

| N R

| |dsname,-name,state- s [access- ] , [dsname,—name]
[ U u

|

| A E

| | GDG=name, gnumber—integer, [action- ] , [01d- 1]

|

1

dsname4
specifies the name of a SAM or a private VAM data set defined in a
DDEF macro instruction or command, or specifies a cataloged public
or private data set name. The data set must reside on a direct-
access or magnetic tape volume.

This operand can be specified as:

e The fully qualified name of a partitioned or nonpartitioned
data set or a partitioned or nonpartitioned generation data
group (identified by absolute generation name or relative
generation number) .

e The partially qualified name of any data set other than a
generation data group.

state

specifies the updating of an existing catalog entry, or the crea-
tion of a new catalog entry:

N - new creation
U - update

access
specifies the owner access qualification for the data set:

R - read-only access
U - unlimited access

If this operand is not specified, unlimited access is assumed.
This default is valid only if a new catalog entry is being made;
otherwise, no change is made to the access qualification. If R is
specified, the owner may not write into his data set but he may
erase his data set.

dsname,
specifies the new name for the data set. This parameter is neces-
sary only if the currently defined name of the data set is to be
changed. The dsname may have a relative generation number
appended.

This operand can be specified as:

e The fully qualified name of a partitioned or nonpartitioned
data set or a partitioned or nonpartitioned generation data
group (identified by absolute generation name or relative
generation number) .

e The partially qualified name of any data set other than a
generation data group.

GDG
specifies the name of a new generation data group.

e e s v S o  — i w—



gnumber
specifies the number of generations to be maintained in the genera-
tion data group.

action
specifies the action to be taken when the n+1 generation is being
cataloged in the generation data group:

A - all previous generations are to be removed from the catalog.
0 - only the oldest generation is to be removed.

If this operand is omitted, O is assumed.

old
specifies the disposition of old generations deleted from the cata-
log. This applies to private volumes only; data sets on public
volumes are always erased when uncataloged.

E - erase external storage belonging to o0ld generation data group
members.
s - save old generation data group members.

If this operand is omitted, S is assumed.

CAUTION: If this macro instruction is included in a module that is
declared privileged (through use of the DCLASS macro instruction), the
address of a save area must be placed in register 13 before execution of
this macro instruction.

The expansion and contraction of SAM or VAM multivolume data sets are
handled differently. Whenever an existing SAM multivolume data set has
been reduced or expanded in size, thereby residing on fewer or more
volumes, it must be recataloged by the user with the CAT macro instruc-
tion. For VAM, the system automatically recatalogs multivolume data
sets which expand or contract.

PROGRAMMING NOTES: When dsname, is given, a new entry is made in the
catalog if the N option was specified. When the U option is given, the
catalog entry is updated with the regquested changes to the data set name
and/or access qualifier. In addition, when dsname, is supplied, a
change is made to the name in the data set labels (DSCBs) on the volumes
containing the data set. This step is omitted if the volumes are on
tape.

If the GDG keyword is specified, an index is created for a new
generation data group using the parameters supplied. If the generation
data group is already cataloged, no updating is possible.

If the dsname is specified with a member name, only the dsname itself
is used; the member name is removed.

If the user wants to change the definition information for a cata-
loged data set, he must issue a new DDEF macro instruction, containing
the new information, and for SAM and private VAM data sets, a CAT macro
instruction. For public data sets issuance of the DDEF will cause the
new information to be automatically cataloged by the system. This effe-
ctively updates the entry for that data set. The information in the CAT
macro instruction may, of course, be changed merely by issuing a CAT
macro instruction with "update" indicated.

For private data sets only, the owner of a generation data group is

allowed to catalog generations of that group. Sharers, regardless of
their level of access, are not permitted to do this.

Cataloging Data Set Attributes 115



Generations of a generation data group that reside on private storage
can be saved by the user even after they are uncataloged.

At completion of execution of the CAT macro instruction, the low-
order byte in register 15 contains one of the following codes:

Code
(Hexadecimal) Significance
00 Cataloging accomplished as requested
o4 Name changed in catalog but not on one or more volumes
08 Invalid element in input string
0ocC Volume not available, or wrong kind of storage
10 Data set name not unique, already in catalog
14 No volume of data set mounted; cannot catalog
18 ABEND request

L— AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand can be used in the L-form of the macro instruction.

EXAMPLES: In EX1, the oplist is presented as a character string. In
EX2, an address designates the oplist.

EX1 CAT 'DATASET,U,U"*
EX2 CAT OPLISTC

DEL -- Delete Catalog Entry (S)

The DEL macro instruction deletes one or more catalog entries for a
data set or group of data sets. When a generation data group name is
supplied, the macro instruction deletes the catalog entries for all
generations in that group. Similarly, a partially qualified data set
name results in catalog entries being deleted for all data sets with the
same initial name component.

[} T T 1
| Name | Operation|Operand |
b } } i
| | name |
| [symbol} | DEL | dsname- |
| | addr |
L L 1 3
dsname

specifies the name of the data set whose catalog entry is to be

deleted.

This operand can be specified as:

s The fully qualified name of: a partitioned or nonpartitioned
data set, or a partitioned or nonpartitioned generation of a
generation data group (identified by absolute generation name
or relative generation number) .

e The partially qualified name of any type of data set, including
a generation data group.

See "Oplist Operands" in Section I for using the addr form of this
operand.

If the data set is not shared, it must reside on a private volume;

the dsname may be the sharer's name for a data set owned by another
user.

116



CAUTION: This macro instruction deletes the catalog entries for data
sets on private volumes only. A macro instruction that attempts to
uncatalog data sets residing in public storage is ignored and a diag-
nostic message is produced if in conversational mode. Only the ERASE
command can be used to remove such data sets from the system. However,
the DEL macro instruction can be used to delete a sharing descriptor
from the sharer's catalog.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Data sets on public volumes must be erased if they
are to be uncataloged. The user must, therefore, use the ERASE command
to remove those data sets from the system except when he is a sharer.

At completion of execution of the DEL macro instruction, the low-
ordexr byte of register 15 contains one of these codes:

Code
(Hexadecimal) Significance

00 Valid return code '

o4 Not class D nor batch monitor

08 Invalid return from NEXTPAR

oc Invalid dsname (input preceded by left parentheses) -
NEXTPAR

10 No dsname supplied after verb

14 Return code from CHECKDS was not divisible by four

18 Data set not cataloged nor in task definition table (TDT)

20 Partitioned data set not in POD

24 Data set not cataloged

28 Data set on a public volume

2C Data set name is a member of a partitioned data set

30 User does not own nor share data set

34 Sharer does not have unlimited access to data set

38 Data set not cataloged

3cC DDEF return code indicating dsname is unknown to the
catalog; hence, no JFCB created

40 Attention interruption

1~ AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in E-form. Only the text form of
the operand can be used in the L-form of the macro instruction.

Cataloging Data Set Attributes 117



DISCONNECTING A DATA SET FROM THE SYSTEM

Just as connecting a data set to the system tells the system a user
is ready to process that data set, disconnecting a data set from the
system tells the system a user has finished processing a data set.

Thus, when a user has finished his processing of a data set he must
inform the system by disconnecting the data set from the system. A data
set may be permanently or temporarily (for BSAM only) disconnected from
the system. The CLOSE macro has been provided with TSS/360 data set
management facilities to allow the user to disconnect a data set from
the system in this manner. Descriptions of the permanent and temporary
close are briefly described below.

CLOSE (permanent close for all access methods) locates the descrip-
tion of data set attributes currently recorded in the data con-
trol block defined by a DCB macro instruction issued for that
data set and (for BSAM only) determines if all I/0 requests
have been satisfied. If they have not been satisfied, the
CLOSE routine waits until they are satisfied before proceeding.
Output data set labels are then created, volumes are positioned
as specified by the user and the control blocks (DCB and JFCB)
containing descriptions of the data set's attributes are
restored to their pre-open status thereby logically disconnect-
ing that data set from further system processing and preventing
further user access to the data set. A subsequent OPEN macro
instruction must be issued for this data set if additional pro-
cessing is required.

CLOSE (T) (temporary close for BSAM data sets only) same as the standard
CLOSE macro instruction except that the fields of the control
blocks (DCB and JFCB) are not restored to their pre-open sta-
tus; the data control blocks remain in an open status and addi-
tional processing may be performed on that data set without
issuing another OPEN macro instruction. The temporary close is
useful as a simple way of repositioning a volume for subsequent
processing.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to disconnecting a data set from the system and the
related CLOSE macro instruction can be found in IBM/360 Time Sharing
System: Assembler Programmer's Guide, Form C28-2032.

CLOSE -- Disconnect Data Set From User's Problem Program (S)

The CLOSE macro instruction disconnects one or more data sets from
the user's problem program.

During the execution of CLOSE, user's trailer label routine, if supp-
lied, will be given control (BSAM and QSAM only) . (Refer to Appendix
A.)

T Ll T 1
| Name | Operation|Operand |
L (1 1

r T T 'l
| (symbol] | CLOSE [ REREAD |
| | | ({dcb-addr, ([opt-)|LEAVE [} ,...) [, TYPE=T] I
L 1 L 4

dcb (all access methods)
specifies address of data control block opened for data set that

118



is to be permanently or temporarily disconnected (closed) from the
system. If more than one data control block is specified, two
commas must be placed between each to indicate the omission of the
positioning option, even though it is applicable to BSAM and QSAM
only.

opt (BSAM and QSAM)
specifies volume repositioning that is to be performed as a result
of closing. Its values and meanings are:

REREAD - positions current volume to process data set again.

LEAVE - positions current volume to logical end of data on the
volume. This value is assumed if the opt operand is omitted.

The opt operand is applicable to volume disposition of magnetic
tape devices only; it is ignored for other devices.

TYPE=T (BSAM ONLY)
is written as shown. It indicates that labels are created and
volumes are positioned, but the fields of the data control block
are not altered. The data set can be processed without issuing
another OPEN macro instruction. If TYPE=T is designated, it app-
lies to all of the associated data control blocks.

After this macro instruction has been executed, the user's program
can issue other macro instructions directed toward processing the
data set because the data control block remains in OPEN status.

If CLOSE (TYPE=T) is issued for a direct-access data set volume, a
regular CLOSE is executed.

CAUTION: The following errors cause the results indicated.

-

Exrrors Result

— . —

| Permanently or temporarily closing a data No Action

|control block that is not open

|

|{Temporarily closing (TYPE=T) a data control
|block that has not been opened for BSAM

No Action

|Permanently closing when the dcb operand does Task terminated

|not specify the address of a data control block

|

|Temporarily closing (TYPE=T) when the dcb operand
|does not specify the address of a data control block

Unpredictable

| Permanently closing a dcb containing an Task terminated

|invalid DSORG specification
L

b e e e e e e e e e e e e e e e ]
Lo o o v ——— A — —— ——— ——— — ey sl s——

If this macro instruction is included in a module that is declared
privileged through use of the DCLASS macro instruction, the address of a
save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: Any number of data control block addresses and asso-
ciated options (BSAM and OSAM) may be specified in the CLOSE macro
instruction. This facility makes it possible to close data control
blocks and their associated data sets in parallel, which is more effi-
cient than to close them individually.

Disconnecting Data Sets 119



VAM only

The CLOSE macro instruction releases any sharing interlocks set for
the data set. Rules for sharing VAM data sets are given in APPENDIX K.

If more than one data control block is specified in a CLOSE macro
instruction for VAM data sets, two commas must be placed between each to
indicate the omission of the repositioning operand, which is applicable
to BSAM only.

BSAM and OSAM only

The CLOSE (TYPE=T) macro instruction may be used to disconnect tem-
porarily, from the problem program, one or more data sets if they reside
on magnetic tape. An OPEN macro instruction must have been previously
executed for each data control block specified in this form of the CLOSE
macro instruction.

When the data sets are temporarily disconnected, labels are processed
and user label exits are taken, if necessary. Magnetic tape volumes are
repositioned as specified in this macro instruction.

Magnetic tape positioning varies depending on the options chosen in
OPEN and CLOSE (TYPE=T) macro instructions. Table 4 relates the options
in macro instructions to the repositioning of tape volumes.

For magnetic tape, positioning varies depending on whether the data
set uses labels. Table 3 defines a final position number for labeled
and unlabeled tapes and Table 4 relates the options chosen in OPEN and
CLOSE macro instructions to positioning of tape volumes.

User trailer-label exits are taken for a data set processed for INOUT
or OUTIN if last operation was a WRITE. No user trailer label exits are
taken if last operation was a READ.

Table 3. Final Magnetic-Tape Positions

r L) T h)
|Position | Labeled Tape | Unlabeled Tape |
k + + 1
| | | |
| | | |
| 1 | Preceding data set | Preceding first data block of |
| | header label group | portion of data set resident on |
| | on current volume | current volume |
k + + 1
| I | I
| I | |
| 2 | Following tape mark | Following tape mark that terminates |
| | that terminates | last data block of portion of data |
| | trailer label group | set resident on current volume |
) | of data set on ] |
| | current volume | |
t 1 i )

120



Table 4. TFactors Determining Magnetic-Tape Positioning For BSAM and

QSAM

r T T N T T 1
|Opt4, of OPEN|Other Factors |Direction of | Positioning as |
| Specified as|Influencing |Last Input | Specified by Opt |
| |Positioning | Operation | in CLOSE ]
| | I F T 1
| | | | LEAVE | REREAD |
L 1 [ ] 1 ,{
) T ] . T T

| OUTPUT | - | Not applicable | | |
—— : : ——— | |
| OUTIN | - | Not determining}| | |
| (BSAM only) | | factor | | |
1 1 I [}

r v 1 1 | I
| INOUT |At least one WRITE|Not determining]| | |
| (BSAM only) |operation in this |factor |Position 2| Position 1|
| |data set | | | |
1 [l 1 J ' |
r 1 ! 1

| INPUT | - | Forward | | |
F = -~ 1 | |
{ INOUT |No WRITE operation|Forward | | |
| (BSAM only) |[executed in this | | | |
{ |data set | | | |
k t i | |
|RDBACK | - | Forward | |
F t e : {
| INPUT | - | Backward | | |
i i} ] 4 I I
1 ] L] 1

| INOUT |No WRITE operation|Backward | | |
| (BSAM only) |executed on this | |Position 1| Position 2]
| |data set ] | | ]
1 [} i J I I
3 ¥ 1 1

| RDBACK { | Backward | | i
) 1 1 L 4L 1

If the data set resides on a magnetic tape, the following concerns
the writing of trailer labels:

1. If data set was opened for OUTIN or INCUT and the last I/0 opera-
tion was a WRITE, then CLOSE or CLOSE (TYPE=T) both cause trailer
labels to be written. If CLOSE (TYPE=T) is issued, additional READ
or WRITE macro instructions are accepted without issuing a new OPEN
macro instruction.

2. If data set was opened for OUTIN or INPUT and the last I/O opera-
tion was a READ, and then CLOSE or CLOSE (TYPE=T) was issued, addi-
tional READ and WRITE macro instructions are accepted without a new
OPEN macro instruction being given.

3. If data set was opened for OUTPUT, A CLOSE or CLOSE (TYPE=T) both
cause trailer labels to be written. If CLOSE (TYPE=T) is issued,
additional WRITE macro instructions are accepted without a new OPEN
macro instruction being given.

4. If data set was opened for INPUT or RDBACK, a CLOSE or CLOSE (TYPE=
T) does not cause trailer labels to be written. If CLOSE (TYPE=T)
is issued, additional READ macro instructions are accepted without
a new OPEN macro instruction being given.

I~ AND E-FORM USE: I- and E-forms of the CLOSE macro instruction are
allowed. The TYPE=T often is not permitted in the E-form. The E~form
of the macro instruction may specify any parameters; however, parameters
specified in the E-form will overlay those specified in the L-form. The
E-form may not specify more DCB operands than are specified in the

Disconnecting Data Sets 121



corresponding L-form. The format of the parameter list generated by the
CLOSE macro instruction is described in Appendix L.

For example:

JOE CLOSE (ADCB, ,BDCB, ,) ,MF=L
TERI CLOSE (» » PRODCB, ,AXDCB) ,MF= (E, JOE)

When the E-form macro instruction is executed, the data control block
PRODCB replaces the data control block BDCB in the parameter list, and
the data control block AXDCB is added to the parameter list in the posi-
tion reserved by the two commas following BDCB in the L-form. Thus,
data control blocks with symbolic address ADCB, PRODCB, and AXDCB are
closed.

EXAMPLES:

for BSAM or QSAM:

EX1 closes the data set associated with data control block INVEN
with no repositioning. EX2 closes the two data sets associated
with data control blocks INVEN and REPORT with different options.
EX3 closes data sets associated with two data control blocks.
Since opt is omitted in EX3, volume disposition is defaulted as
LEAVE. EX4 generates a parameter list for closing INVEN, and EX5
closes INVEN.

EX1 CLOSE (INVEN, LEAVE)
EX2 CLOSE (INVEN, LEAVE, REPORT , REREAD)
EX3 CLOSE (INVEN, ,MASTER)
EX4 CLOSE (INVEN, LEAVE)
EX5 CLOSE MF= (E,EXU)
for VAM:

EX1 closes data sets associated with two data control blocks. EX2
generates a parameter list for closing INVEN, and EX3 closes INVEN.

EX1 CLOSE (INVEN, ,MASTER)
EX2 CLOSE (INVEN) ,MF=L
EX3 CLOSE MF= (E, EX2)

122



REMOVING A DATA SET FROM THE SYSTEM

When a user no longer has any use for a particular data set, it is
wasteful to leave such a data set recorded on a device that could be
used for storing new data into the system. For this reason, TSS/360
data set management facilities provide a user with two macro instruc-
tions, ERASE and REL, which can physically remove a data set from the
system and release the input/output devices on which they had been reco-
rded for future system use.

ERASE for data sets recorded on direct access devices this macro
instruction erases the data set from the device by erasing the
direct access storage assigned to the data set. It also removes
any catalog entry for the erased data set that may have been
established in a user's catalog (via previous system or user
issuance of a CAT macro instruction).

REL in effect, cancels or erases a previously defined public or priv-
ate data set from the system by deleting the attribute specifica-
tions previously defined to the system by issuance of a DDEF
macro instruction. For private data sets, the input/output
devices associated with it are released to a system resource
pool. It can also be used to release all data sets of a conca-
tenated data set or to remove a users JOBLIB.

Detailed explanations of each of the above macro instructions and the
formats in which they may be specified are shown below. Further infor-
mation pertaining to physically removing a data set from the system and
the related macro instructions can be found in IBM System/360 Time Shar-
ing System: Assembler Programmer's Guide, Form C28-2032.

ERASE —— Remove a Data Set from Direct-Access Storage (S)

The ERASE macro instruction erases the direct-access storage assigned
to a data set. In addition, it removes the entry for a cataloged data
set from the catalog.

r T k] |
| Name | Operation|Operand |
L [l

5 } 1
| [symbol] |ERASE dsname- |text |
| i addr |
L | i ]
dsname

specifies the name of any data set residing on direct-access
storage. The data set name must be cataloged or must already be
defined within the current task.

This operand can be specified as:

e The fully qualified name of: a partitioned or nonpartitioned
data set, a member of a partitioned data set, or a partitioned
or nonpartitioned generation of a generation data group (iden-
tified by absolute generation name or relative generation
number) .

e The partially qualified name of any type of data set, including
a generation data group.

If the text option is selected, the data set name, enclosed in apos-
trophes, is written as the operand; if the addr option is selected, the
operand specifies the location of the data set name.

Remove Data Set From System 123



If the data set name does not involve a member name, the direct-
access storage occupied by that data set is erased (i.e., released for
other use) . The name is removed from the catalog if the data set was
cataloged.

If the data set name designates a particular member of a partitioned
data set, the member's name is deleted from the partitioned organization
directory (POD) of that data set.

If the data set name is a partially qualified name or the name of a
generation data group, all data sets (or generations) indexed under that
dsname are erased and their catalog entries are removed.

If the name of a partitioned data set is supplied without a member
name, the storage for the entire partitioned data set is erased, and its
name is removed from the catalog.

PROGRAMMING NOTES: The ERASE macro instruction cannot be used to erase
data sets on magnetic tape; it applies to data sets on direct-access
storage only.

If a shared data set is opened by several users concurrently, a par-
ticular user cannot erase that data set until every other sharer active-
1y using that data set issues a CLOSE macro instruction to deactivate
their use of that data set. Any effort to erase an actively shared open
data set will be ignored and result in diagnostics being issued. Once a
user is the only currently active user of a shared data set he may erase
that data set regardless of whether he has closed the data set or not.

If the data set name specifies SYSULIB (user library), it must also
include the name of the module that is to be erased. The module name
must be contained within parentheses following the SYSULIB data set
name. Erasure of the entire SYSULIB data set is not permitted; there-
fore, specifying SYSULIB without a module name is invalid.

I~ AND E-FORM USE: The L-form must specify the dsname as text (i.e.,
the data set name enclosed in apostrophes) . The E-form must not specify
the dsname, but must specify the location of the parameter list created
by the L-form.

EXAMPLES: EX1 erases the data set A.B.C. EX2 erases all data sets
cataloged under the partially gqualified name A.B. EX3 erases the data
set whose name is stored at location NAMLOC. EXU4 removes member LAURA
from the partitioned data set R.L.T. EX5 generates the parameter list
for erasing data set M.P.S., and EX6 erases M.P.S.

EX1 ERASE ‘A.B.C*
EX2 ERASE ‘A.B'
EX3 ERASE NAMLOC
EXY ERASE 'R.L.T (LAURA) '
EX5 ERASE *M.P.S',MF=L
EX6 ERASE MF= (E, EX5)
REL -- Release Data Set or Remove Job Library From Program Library List

B

The REL macro instruction deletes the definition previously estab-
lished for a data set. It may be used, in effect, to cancel a preceding
definition for either a public or private data set, as well as to
release, the input/output devices associated with a private data set. It
may also be used to release one or all data sets of a given concatena-
tion, and to remove JOBLIB from the user's program library list.

124



T T T 1
| Name | Operation|Operand |
L 1 1

r T ] "
{ [symbol} |REL |oplist-]text |
| | | addr |
L AL 1 3
oplist

specifies the list of operands.

r b
| Oplist |
{
I 1
| ddname-symbol [, dsname-name] |
L |
ddname
specifies a data definition name previously issued by a DDEF macro
instruction or command. This data-definition name identifies the
data set being released. The ddname may specify a job library and
may also specify that the library data set name is to be removed
from the program library list.
dsname

specifies the name of one data set in a concatenated series. If
the operand is not specified, all data sets concatenated with the
ddname will be released.

This operand can be specified as the fully qualified name of a non-
partitioned data set or of a nonpartitioned generation of a genera-
tion data group (identified by absolute generation name or relative
generation number) .

CAUTION: When a data set has been released, it cannot be referred to
again until another DDEF macro instruction or command defining that data
set is issued.

If this macro instruction is included in a module that is declared
privileged (through use of the DCLASS macro instruction), the address of
a save area must be placed in register 13 before execution of this macro
instruction.

PROGRAMMING NOTES: After execution of the REL macro instruction, the
low-order byte of register 15 contains one of these codes:

Code (Hexadecimal) Significance
00 Normal
o4 Defaulted or invalid ddname
08 Attention interrupt occurred
oc Reserved ddname specified - not permitted
10 Undefined ddname
14 Uncataloged on public storage
18 Undefined dsname
20 Spurious input

L- AND E-FORM USE: The oplist operand is required in the L-form of this
macro instruction and is not permitted in the E-form. Only the text
form of the operand may be used in the L-form of the macro instruction.

EXAMPLES: 1In EX1, a character constant is given for the data-definition
name DD1. In EX2, the address of the same ddname is given.

EX1 REL '‘DD1"
EX2 REL RELTAG

Remove Data Set From System 125



SECTION II: PROGRAM MANAGEMENT

This section describes TSS/360 macro instructions available to the
user to facilitate program management. To enhance user understanding of
these macro instructions, they are presented in functional groups that
reflect their primary use in the system.

VIRTUAL STORAGE MANAGEMENT

It might occasionally become necessary for a user to obtain addition-
al virtual storage space at some point during the execution of his pro-
gram. The TSS/360 program management facilities provide a user with the
services of several macro instructions (GETMAIN and FREEMAIN) to give
him this capability. The need for additional virtual storage at object
time is specified by issuing the GETMAIN macro instruction. When the
dynamically allocated virtual storage area is no longer required by a
user he may then release the area by issuing the FREEMAIN macro
instruction.

In addition to acquiring additional storage space, the CSTORE macro
instruction has bee<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>